Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. Wu, W. Shan, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H.P. Xin, and C.W. Tu, Phys. Rev. B 64, 085320 (2001).
S.H. Wei and A. Zunger, Phys. Rev. Lett. 76, 664 (1996).
R. Kudrawiec, G. Sȩk, J. Misiewicz, F. Ishikawa, A. Trampert, and K.H. Ploog, Appl. Phys. Lett. 94, 011907 (2009).
M.-A. Pinault and E. Tournié, Appl. Phys. Lett. 78, 1562 (2001).
M.H. Ya, Y.F. Chen, and Y.S. Huang, J. of Appl. Phys. 92, 1446 (2002).
J. Shao, W. Lu, M. Sadeghi, X. , S.M. Wang, L. Ma, and A. Larsson, Appl. Phys. Lett. 93, 031904 (2008).
J.B. Heroux, X. Yang, and W.I. Wang, J. of Appl. Phys. 92, 4361 (2002).
K. Ryczko, G. Sȩk, P. Sitarek, A. Mika, J. Misiewicz, F. Langer, S. Höffling, A. Forchel, and M. Kamp, J. of Appl. Phys. 113, 233508 (2013).
S. Bhuyan, S.K. Das, S. Dhar, B. Pal, and B. Bansal, J. of Appl. Phys. 116, 023103 (2014).
A. Hierro, J.-M. Ulloa, J.-M. Chauveau, A. Trampert, M.-A. Pinault, E. Tournié, A. Guzmán, J.L. Sánchez-Rojas, and E. Calleja, J. Appl. Phys. 94, 2319 (2003).
B. Bansal, A. Kadir, A. Bhattacharya, and B.M. Arora, Appl. Phys. Lett. 89, 032110 (2006).
S. Shirakata, M. Kondow, and T. Kitatani, App. Phys. Lett. 80, 2087 (2002).
F. Saidi, F. Hassen, H. Maaref, L. Auvray, H. Dumont, and Y. Monteil, Mater. Sci. Eng. C 21, 245 (2002).
H. Dumont, L. Auvray, Y. Monteil, F. Saidi, F. Hassen, and H. Maaref, Opt. Mater. 24, 303 (2003).
T. Nyutten, M. Hayne, B. Bansal, H.Y. Liu, M. Hopkins, and V.V. Moshchalkov, Phys. Rev. B 84, 045302 (2011).
O. Rubel, M. Galluppi, S.D. Baranovskii, K. Volz, L. Geelhaar, H. Riechert, P. Thomas, and W. Stolz, J. of Appl. Phys. 98, 063518 (2005).
A.R. Kovsh, J.S. Wang, L. Wei, R.S. Shiao, J.Y. Chi, B.V. Volovik, A.F. Tsatsul‘nikov, and V.M. Ustinov, J. Vac. Sci. Technol. B 20, 1158 (2002).
A. Aho, V. Polojarvi, V.-M. Korpijarvi, H. Salmi, A. Tukianinen, P. Laukkanen, and M. Guina, Sol. Energ. Mat. Sol. Cells 124, 150-158 (2014).
M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, Jap. J. Appl. Phys. 35, 1273 (1996).
A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997).
M. Elborg, M. Jo, Y. Ding, T. Noda, T. Mano, and K. Sakoda, Jap. J. of Appl. Phys. 51, 06FF15 (2012).
T. Mano, M. Jo, K. Mitsuishi, M. Elborg, Y. Sugimoto, T. Noda, Y. Sakuma, and K. Sakoda, Appl. Phys. Express 4, 125001 (2011).
I.A. Buyanova, W.M. Chen, G. Pozina, J.P. Bergman, B. Monemar, H.P. Xin, and C.W. Tu, Appl. Phys. Lett. 75, 501 (1999).
T. Niebling, O. Rubel, W. Heimbrodt, W. Stolz, S.D. Baranovskii, P.J. Klar, and J.F. Geisz, J. Phys.: Condens. Matter 20, 015217 (2008).
J.S. Blakemore, J. of Appl. Phys. 53, R123 (1982).
K. Uesugi, I. Suemune, T. Hasegawa, T. Akutagawa, and T. Nakamura, Appl. Phys. Lett. 76, 1285 (2000).
M.O. Watanabe, J. Yoshida, M. Mashita, T. Nakanisi, and A. Hojo, J. of Appl. Phys. 57, 5340 (1985).
W. Walukiewicz, W. Shan, J.W. Ager III, D.R. Chamberlin, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, and S.R. Kurtz, in Proceedings of the 195th Electrochemical Society International Symposium (Seattle, WA, 1999), Vol.99, p. 190.
E. Arola, J. Ojanen, H.-P. Komsa, and T.T. Rantala, Phys. Rev. B 72, 045222 (2005).
W. Shan, W. Walukiewicz, and J.W. Ager III, Phys. Rev. Lett. 82, 1221 (1999).

Data & Media loading...


Article metrics loading...



We investigate the optical transitions of GaN As quantum wells (QWs) embedded in wider band gap AlGaAs. A combination of absorption and emission spectroscopic techniques is employed to systematically investigate the properties of GaNAs QWs with N concentrations ranging from 0 – 3%. From measurement of the photocurrent spectra, we find that besides QW ground state and first excited transition, distinct increases in photocurrent generation are observed. Their origin can be explained by N-induced modifications in the density of states at higher energies above the QW ground state. Photoluminescence experiments reveal that peak position dependence with temperature changes with N concentration. The characteristic S-shaped dependence for low N concentrations of 0.5% changes with increasing N concentration where the low temperature red-shift of the S-shape gradually disappears. This change indicates a gradual transition from impurity picture, where localized N induced energy states are present, to alloying picture, where an impurity-band is formed. In the highest-N sample, photoluminescence emission shows remarkable temperature stability. This phenomenon is explained by the interplay of N-induced energy states and QW confined states.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd