Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
P. Russer and N. Fichtner, IEEE Microwave Magazine 11(3), 119-135 (2010) 11256531.
X. Hu, Master thesis, University of Toronto, Toronto, 2013.
D. C. Serrano, Master thesis, Technical University of Cartagena, Cartagena, 2015.
M. Dragoman, A. A. Muller, D. Dragoman, F. Coccetti, and R. Plana, Journal of Applied Physics 107, 1-3 (2010) 104313.
X. J. Huang, T. Leng, M. J. Zhu, X. Zhang, J. C. Chen, K. H. Chang, M. Aqeeli, A. Geim, K. Novoselov, and Z. R. Hu, Science Reports 5, 1-8 (2015), 18298.
E. Carrasco and J. Perruisseau-Carrier, IEEE Antennas and Wireless Propagation Letters 12, 253-256 (2013).
J. Nakabayashi, D. Yamamoto, and S. Kurihara, Physical Review Letters 102, 11248-11256 (2009) 066803.
D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Álvarez-Melcón, IEEE Transactions on Nanotechnology 13(6), 1145-1153 (2014).
F. Rana, IEEE Transactions on Nanotechnology 7(1), 91-99 (2008).
J. Tao, X. C. Yu, B. Hu, A. Dubrovkin, and Q. J. Wang, Optics Letters 39(2), 271-274 (2014).
Y. P. Zhang, T. T. Li, Q. Chen, H. Y. Zhang, J. O’Hara, E. Abele, A. Taylor, H.-T. Chen, and A. Azad, Science Reports 5, 1-8 (2015), 18463.
S. O. Yurchenko, K. A. Komarov, and V. I. Pustovoit, AIP Advances 5, 1-12 (2015), 057144.
X. -S. Yang, B. -Z. Wang, W. X. Wu, and S. Q. Xiao, IEEE Antennas and Wireless Propagation Letters 6, 168-171 (2007).
J. -W. Baik, S. Pyo, T. -H. Lee, and Y. -S. Kim, ETRI Journal 31(3), 318-320 (2009).
C. Kittiyanpunya and M. Krairiksh, IEEE Transactions on Antennas and Propagation 61(12), 6210-6214 (2013).
T. Zhang, S. -Y. Yao, and Y. Wang, IEEE Antennas and Wireless Propagation Letters 14, 183-186 (2015).
Z. Xu, X. D. Dong, and J. Bornemann, IEEE Transactions on Terahertz Science and Technology 4(5), 609-617 (2014).
M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, IEEE Transactions on Terahertz Science and Technology 4(1), 116-122 (2014).
X. -C. Wang, W. -S. Zhao, J. Hu, and W. -Y. Yin, IEEE Transactions on Nanotechnology 14(1), 62-69 (2015).
A. H. Radwan, M. D’Amico, and G. G. Gentili, in Antennas and Propagation Conference (LAPC) (Loughborough, 2014), pp. 671-675.
H. -Q. Xia, Q. -X. Pan, J. Hu, and W. -Y. Yin, IEEE International Symposium on Antennas and Propagation & USNC/URSI National Ratio Science Meeting (2015) pp. 1462-1463.
P. Nayeri, F. Yang, and A. Z. Elsherbeni, IEEE Antennas and Propagation Magazine 57(4), 32-47 (2015).
M. Dragoman, D. Neculoiu, A. -C. Bunea, G. Deligeorgis, M. Aldrigo, D. Vasilache, A. Dinescu, G. Konstantinidis, D. Mencarelli, L. Pierantoni, and M. Modreanu, Applied Physics Letters 106, 1-5 (2015) 153101.
T. Zhou, Z. Q. Cheng, H. F. Zhang, M. L. Berre, L. Militaru, and F. Calmon, Microwave and Optical Technology Letters 56(8), 1792-1794 (2014).
M. Tamagnone, J. S. Gomez Diaz, J. Mosig, and J. Perruisseau-Carrier, in IEEE MTT-S International Microwave Symposium Digest (2013), pp. 1-3.
D. Puccinelli and M. Haenggi, IEEE Circuits and Systems Magazine 3(3), 19-29 (2005).
I. E. Lee, Z. Ghassemlooy, W. P. Ng, V. Gourdel, M. A. Khalighi, S. Zvanovec, and M. Uysal, in 9th IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (Manchester, UK, 2014), pp. 368-373.
X. Cheng, Y. Yao, S.-W. Qu, Y. Wu, J. Yu, and X. Chen, Electronics Letters 52(7), 494-496 (2016).
M. Tamagnone, J. S. G. Diaz, J. Mosig, and J. Perruisseau-Carrier, in 2013 IEEE MTT-S International Microwave Symposium Digest, MWSYM.2013.6697756:1-3 (2013).
L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, Science 342(6158), 614-617 (2013).
V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Journal of Physics 19, 1-25 (2007) 026222.
G. W. Hanson, IEEE Transactions on Antennas and Propagation 3, 747-747 (2008).
G. W. Hanson, Journal of Applied Physics 103, 064302 (2008).
D. Correas-Serrano, J. S. Gomez-Diaz, A. Alù, and A. Álvarez Melcón, IEEE Transactions on Terahertz Science and Technology 5(6), 951-960 (2015).
Y. Luo and Q.-X. Chu, IEEE Antennas and Wireless Propagation Letters 15, 564-547 (2016).
J. Wu, Z. Zhao, Z. Nie, and Q.-H. Liu, IEEE IEEE Transactions on Antennas and Propagation 63(4), 1832-1837 (2015).

Data & Media loading...


Article metrics loading...



This paper presents a radiation pattern reconfigurable Yagi-Uda antenna based on graphene operating at terahertz frequencies. The antenna can be reconfigured to change the main beam pattern into two or four different radiation directions. The proposed antenna consists of a driven dipole radiation conductor, parasitic strips and embedded graphene. The hybrid graphene-metal implementation enables the antenna to have dynamic surface conductivity, which can be tuned by changing the chemical potentials. Therefore, the main beam direction, the resonance frequency, and the front-to-back ratio of the proposed antenna can be controlled by tuning the chemical potentials of the graphene embedded in different positions. The proposed two-beam reconfigurable Yagi-Uda antenna can achieve excellent unidirectional symmetrical radiation pattern with the front-to-back ratio of 11.9 dB and the10-dB impedance bandwidth of 15%. The different radiation directivity of the two-beam reconfigurable antenna can be achieved by controlling the chemical potentials of the graphene embedded in the parasitic stubs. The achievable peak gain of the proposed two-beam reconfigurable antenna is about 7.8 dB. Furthermore, we propose a four-beam reconfigurable Yagi-Uda antenna, which has stable reflection-coefficient performance although four main beams in reconfigurable cases point to four totally different directions. The corresponding peak gain, front-to-back ratio, and 10-dB impedance bandwidth of the four-beam reconfigurable antenna are about 6.4 dB, 12 dB, and 10%, respectively. Therefore, this novel design method of reconfigurable antennas is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd