Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4954030
1.
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).
http://dx.doi.org/10.1038/318162a0
2.
A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).
http://dx.doi.org/10.1016/0009-2614(86)80661-3
3.
H. F. Bettinger, B. I. Yakobson, and G. E. Scuseria, J. Am. Chem. Soc. 125, 5572 (2003).
http://dx.doi.org/10.1021/ja0288744
4.
P. W. Dunk, N. K. Kaiser, C. L. Hendrickson, J. P. Quinn, C. P. Ewels, Y. Nakanishi, Y. Sasaki, H. Shinohara, A. G. Marshall, and H. W. Kroto, Nat. Chem. 3, 855 (2012).
5.
I. N. Ioffe, A. A. Goryunkov, N. B. Tamm, L. N. Sidorov, E. Kemnitz, and S. I. Troyanov, Angew. Chem. Int. Ed. 121, 6018 (2009).
http://dx.doi.org/10.1002/ange.200902253
6.
G. D. Lee, E. Yoon, K. He, A. W. Robertson, and J. H. Warner, Nanoscale 6, 14836 (2014).
http://dx.doi.org/10.1039/C4NR04718D
7.
A. J. M. Nascimento and R. W. Nunes, Nanotechnology 24, 435707 (2013).
http://dx.doi.org/10.1088/0957-4484/24/43/435707
8.
Z. A. Zhang, A. Kutana, and B. I. Yakobson, Nanoscale 7, 2716 (2015).
http://dx.doi.org/10.1039/C4NR06332E
9.
S. T. Skowron, I. V. Lebedeva, A. M. Popov, and E. Bichoutskaia, Chem. Soc. Rev. 44, 3143 (2015).
http://dx.doi.org/10.1039/C4CS00499J
10.
H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, and L. S. Wang, Nat. Chem. 6, 727 (2014).
11.
H. Bai, Q. Chen, H. J. Zhai, and S. D. Li, Angew. Chem. Int. Ed. 54, 941 (2015).
http://dx.doi.org/10.1002/anie.201408738
12.
R. X. He and X. C Zeng, Chem. Commun. 51, 3185 (2015).
http://dx.doi.org/10.1039/C4CC09151E
13.
H. L. Dong, T. J. Hou, S. T. Lee, and Y. Y. Li, Sci. Rep. 5, 09952 (2015).
http://dx.doi.org/10.1038/srep09952
14.
G. P. Gao, F. X. Ma, Y. L. Jiao, Q. Sun, Y. Jiao, E. Waclawik, and A. J. Du, Comput. Mater. Sci. 108, 38 (2015).
http://dx.doi.org/10.1016/j.commatsci.2015.06.005
15.
H. L. Dong, B. Lin, K. Gilmore, T. J. Hou, S. T. Lee, and Y. Y. Li, Curr. Appl. Phys. 15, 1084 (2015).
http://dx.doi.org/10.1016/j.cap.2015.06.008
16.
Z. Yang, Y. L. Ji, G. Q. Lan, L. C. Xu, X. G. Liu, and B. S. Xu, Solid State Commun. 217, 38 (2015).
http://dx.doi.org/10.1016/j.ssc.2015.05.013
17.
W. Fa, S. Chen, S. Pande, and X. C. Zeng, J. Phys. Chem. A 119, 11208 (2015).
http://dx.doi.org/10.1021/acs.jpca.5b07173
18.
G. M. Guajardo, J. L. Cabellos, A. D. Celaya, S. Pan, R. Islas, P. K. Chattaraj, T. Heine, and G. Merino, Sci. Rep. 5, 11287 (2015).
http://dx.doi.org/10.1038/srep11287
19.
Q. Chen, W. L. Li, Y. F. Zhao, S. Y. Zhang, H. S. Hu, H. R. Li, W. J. Tian, H. G. Lu, J. Li, and L. S. Wang, ACS Nano. 9, 754 (2015).
http://dx.doi.org/10.1021/nn506262c
20.
Q. Chen, S. Y. Zhang, H. Bai, W. J. Tian, T. Gao, H. R. Li, C. Q. Miao, Y. W. Mu, H. G. Lu, H. J. Zhai, and S. D. Li, Angew. Chem. Int. Ed. 54, 8160 (2015).
http://dx.doi.org/10.1002/anie.201501588
21.
T. B. Tai and M. T. Nguyen, Chem. Commun. (2015) ; DOI: 10.1039/c5cc09111j.
22.
A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, and A. I. Boldyrev, Acc. Chem. Res. 47, 1349 (2014).
http://dx.doi.org/10.1021/ar400310g
23.
W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, and A. I. Boldyrev, Nat. Chem. 2, 202 (2010).
http://dx.doi.org/10.1038/nchem.534
24.
J. J. Zhao, X. M. Huang, R. L. Shi, H. S. Liu, Y. Su, and R. B. King, Nanoscale 7, 15086 (2015).
http://dx.doi.org/10.1039/C5NR04034E
25.
L. Wang, J. J. Zhao, F. Y. Li, and Z. F. Chen, Chem. Phys. Lett. 501, 16 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.10.052
26.
N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson, Phys. Rev. Lett. 98, 166804 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.166804
27.
S. Erhardt, G. Frenking, Z. F. Chen, and P. R. Schleyer, Angew. Chem. Int. Ed. 44, 1078 (2005).
http://dx.doi.org/10.1002/anie.200461970
28.
Y. J. Wang, X. Y. Zhao, Q. Chen, H. J. Zhai, and S. D. Li, Nanoscale. 7, 16054 (2015).
http://dx.doi.org/10.1039/C5NR03732H
29.
J. Zhang, A. P. Sergeeva, M. Sparta, and A. N. Alexandrova, Angew. Chem. Int. Ed. 51, 8512 (2012).
http://dx.doi.org/10.1002/anie.201202674
30.
D. Moreno, S. Pan, L. L. Zeonjuk, R. Islas, E. Osorio, G. Martínez-Guajardo, P. K. Chattaraj, T. Heine, and G. Merino, Chem. Commun. 50, 8140 (2014).
http://dx.doi.org/10.1039/c4cc02225d
31.
J. O. C. Jiménez-Halla, R. Islas, T. Heine, and G. Merino, Angew. Chem. Int. Ed. 49, 5668 (2010).
http://dx.doi.org/10.1002/anie.201001275
32.
F. Cervantes-Navarro, G. Martínez-Guajardo, E. Osorio, D. Moreno, W. Tiznado, R. Islas, K. J. Donald, and G. Merino, Chem. Commun. 50, 10680 (2014).
http://dx.doi.org/10.1039/C4CC03698K
33.
R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).
http://dx.doi.org/10.1063/1.438955
34.
G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).
http://dx.doi.org/10.1063/1.443164
35.
A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
36.
C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
37.
T. Yanai, D. Tew, and N. Handy, Chem. Phys. Lett. 393, 5157 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.011
38.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
39.
C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
40.
J. Cizek, in Adv. Chem. Phys., edited by P. C. Hariharan (Wiley Interscience, New York, 1969), Vol. 14, p. 35.
41.
G. E. Scuseria, C. L. Janssen, and H. F. Schaefer III, J. Chem. Phys. 89, 7382.
http://dx.doi.org/10.1063/1.455269
42.
G. E. Scuseria and H. F. Schaefer III, J. Chem. Phys 90, 3700 (1989).
http://dx.doi.org/10.1063/1.455827
43.
H. J. Werner et al., MOLPRO, version 2012.1 (www.molpro.net).
44.
C. Peng and H. B. Schlegel, Israel J. Chem. 33, 449 (1993).
http://dx.doi.org/10.1002/ijch.199300051
45.
C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, J. Comp. Chem. 17, 49 (1996).
http://dx.doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
46.
M. J. Frisch et al., Gaussian 09, revision A.2, Gaussian Inc., Wallingford, Connecticut, 2009.
47.
J. V. Vondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter, Comput. Phys. Commun. 167, 103 (2005).
http://dx.doi.org/10.1016/j.cpc.2004.12.014
48.
A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
49.
S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.1703
50.
S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
51.
W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
52.
H. Lu and S.-D. Li, J. Chem. Phys. 138, 114107 (2013).
http://dx.doi.org/10.1063/1.4795158
53.
S. De, A. Willand, M. Amsler, P. Pochet, L. Genovese, and S. Goedecker, Phys. Rev. Lett. 106, 225502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.225502
54.
See supplementary material at http://dx.doi.org/10.1063/1.4954030 for the molecular dynamics simulations, reaction path, and geometric structures.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4954030
Loading
/content/aip/journal/adva/6/6/10.1063/1.4954030
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4954030
2016-06-10
2016-12-08

Abstract

The Stone-Wales transformation plays an important role in the isomerization of fullerenes and graphenic systems. The continuous conversions between neighboring six- and seven-membered rings in the borospherene (all-boron fullerene) B had been discovered (Martínez-Guajardo Sci. Rep. , 11287 (2015)). In the first axially chiral borospherenes B and B , we identify three active boron atoms which are located at the center of three alternative sites involving five boron atoms denoted as “W”, “X”, and “M”, respectively. The concerted movements of these active boron atoms and their close neighbors between neighboring six- and seven-membered rings define the “W-X-M” transformation of borospherenes. Extensive first-principles molecular dynamics simulations and quadratic synchronous transit transition-state searches indicate that, via three transition states (TS1, TS2, and TS3) and two intermediate species (M1 and M2), the three-step “W-X-M” transformations convert the B global minimum into its isomer at room temperature (300 K) and vice versa. The maximum barriers are only 3.89 kcal/mol from to B and 2.1 kcal/mol from to B , rendering dynamic fluxionalities to these borospherenes. Therefore, the “W-X-M” transformation plays an important role in the borospherenes and borospherene-based nanostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4954030.html;jsessionid=DjGayQxQIgTX8Wv9vnPCNwUV.x-aip-live-02?itemId=/content/aip/journal/adva/6/6/10.1063/1.4954030&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4954030&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4954030'
Right1,Right2,Right3,