Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).
A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).
H. F. Bettinger, B. I. Yakobson, and G. E. Scuseria, J. Am. Chem. Soc. 125, 5572 (2003).
P. W. Dunk, N. K. Kaiser, C. L. Hendrickson, J. P. Quinn, C. P. Ewels, Y. Nakanishi, Y. Sasaki, H. Shinohara, A. G. Marshall, and H. W. Kroto, Nat. Chem. 3, 855 (2012).
I. N. Ioffe, A. A. Goryunkov, N. B. Tamm, L. N. Sidorov, E. Kemnitz, and S. I. Troyanov, Angew. Chem. Int. Ed. 121, 6018 (2009).
G. D. Lee, E. Yoon, K. He, A. W. Robertson, and J. H. Warner, Nanoscale 6, 14836 (2014).
A. J. M. Nascimento and R. W. Nunes, Nanotechnology 24, 435707 (2013).
Z. A. Zhang, A. Kutana, and B. I. Yakobson, Nanoscale 7, 2716 (2015).
S. T. Skowron, I. V. Lebedeva, A. M. Popov, and E. Bichoutskaia, Chem. Soc. Rev. 44, 3143 (2015).
H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, and L. S. Wang, Nat. Chem. 6, 727 (2014).
H. Bai, Q. Chen, H. J. Zhai, and S. D. Li, Angew. Chem. Int. Ed. 54, 941 (2015).
R. X. He and X. C Zeng, Chem. Commun. 51, 3185 (2015).
H. L. Dong, T. J. Hou, S. T. Lee, and Y. Y. Li, Sci. Rep. 5, 09952 (2015).
G. P. Gao, F. X. Ma, Y. L. Jiao, Q. Sun, Y. Jiao, E. Waclawik, and A. J. Du, Comput. Mater. Sci. 108, 38 (2015).
H. L. Dong, B. Lin, K. Gilmore, T. J. Hou, S. T. Lee, and Y. Y. Li, Curr. Appl. Phys. 15, 1084 (2015).
Z. Yang, Y. L. Ji, G. Q. Lan, L. C. Xu, X. G. Liu, and B. S. Xu, Solid State Commun. 217, 38 (2015).
W. Fa, S. Chen, S. Pande, and X. C. Zeng, J. Phys. Chem. A 119, 11208 (2015).
G. M. Guajardo, J. L. Cabellos, A. D. Celaya, S. Pan, R. Islas, P. K. Chattaraj, T. Heine, and G. Merino, Sci. Rep. 5, 11287 (2015).
Q. Chen, W. L. Li, Y. F. Zhao, S. Y. Zhang, H. S. Hu, H. R. Li, W. J. Tian, H. G. Lu, J. Li, and L. S. Wang, ACS Nano. 9, 754 (2015).
Q. Chen, S. Y. Zhang, H. Bai, W. J. Tian, T. Gao, H. R. Li, C. Q. Miao, Y. W. Mu, H. G. Lu, H. J. Zhai, and S. D. Li, Angew. Chem. Int. Ed. 54, 8160 (2015).
T. B. Tai and M. T. Nguyen, Chem. Commun. (2015) ; DOI: 10.1039/c5cc09111j.
A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, and A. I. Boldyrev, Acc. Chem. Res. 47, 1349 (2014).
W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, and A. I. Boldyrev, Nat. Chem. 2, 202 (2010).
J. J. Zhao, X. M. Huang, R. L. Shi, H. S. Liu, Y. Su, and R. B. King, Nanoscale 7, 15086 (2015).
L. Wang, J. J. Zhao, F. Y. Li, and Z. F. Chen, Chem. Phys. Lett. 501, 16 (2010).
N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson, Phys. Rev. Lett. 98, 166804 (2007).
S. Erhardt, G. Frenking, Z. F. Chen, and P. R. Schleyer, Angew. Chem. Int. Ed. 44, 1078 (2005).
Y. J. Wang, X. Y. Zhao, Q. Chen, H. J. Zhai, and S. D. Li, Nanoscale. 7, 16054 (2015).
J. Zhang, A. P. Sergeeva, M. Sparta, and A. N. Alexandrova, Angew. Chem. Int. Ed. 51, 8512 (2012).
D. Moreno, S. Pan, L. L. Zeonjuk, R. Islas, E. Osorio, G. Martínez-Guajardo, P. K. Chattaraj, T. Heine, and G. Merino, Chem. Commun. 50, 8140 (2014).
J. O. C. Jiménez-Halla, R. Islas, T. Heine, and G. Merino, Angew. Chem. Int. Ed. 49, 5668 (2010).
F. Cervantes-Navarro, G. Martínez-Guajardo, E. Osorio, D. Moreno, W. Tiznado, R. Islas, K. J. Donald, and G. Merino, Chem. Commun. 50, 10680 (2014).
R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).
G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).
A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
T. Yanai, D. Tew, and N. Handy, Chem. Phys. Lett. 393, 5157 (2004).
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
J. Cizek, in Adv. Chem. Phys., edited by P. C. Hariharan (Wiley Interscience, New York, 1969), Vol. 14, p. 35.
G. E. Scuseria, C. L. Janssen, and H. F. Schaefer III, J. Chem. Phys. 89, 7382.
G. E. Scuseria and H. F. Schaefer III, J. Chem. Phys 90, 3700 (1989).
H. J. Werner et al., MOLPRO, version 2012.1 (
C. Peng and H. B. Schlegel, Israel J. Chem. 33, 449 (1993).
C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, J. Comp. Chem. 17, 49 (1996).<49::AID-JCC5>3.0.CO;2-0
M. J. Frisch et al., Gaussian 09, revision A.2, Gaussian Inc., Wallingford, Connecticut, 2009.
J. V. Vondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter, Comput. Phys. Commun. 167, 103 (2005).
A. D. Becke, Phys. Rev. A 38, 3098 (1988).
S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).
S. Nosé, J. Chem. Phys. 81, 511 (1984).
W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
H. Lu and S.-D. Li, J. Chem. Phys. 138, 114107 (2013).
S. De, A. Willand, M. Amsler, P. Pochet, L. Genovese, and S. Goedecker, Phys. Rev. Lett. 106, 225502 (2011).
See supplementary material at for the molecular dynamics simulations, reaction path, and geometric structures.[Supplementary Material]

Data & Media loading...


Article metrics loading...



The Stone-Wales transformation plays an important role in the isomerization of fullerenes and graphenic systems. The continuous conversions between neighboring six- and seven-membered rings in the borospherene (all-boron fullerene) B had been discovered (Martínez-Guajardo Sci. Rep. , 11287 (2015)). In the first axially chiral borospherenes B and B , we identify three active boron atoms which are located at the center of three alternative sites involving five boron atoms denoted as “W”, “X”, and “M”, respectively. The concerted movements of these active boron atoms and their close neighbors between neighboring six- and seven-membered rings define the “W-X-M” transformation of borospherenes. Extensive first-principles molecular dynamics simulations and quadratic synchronous transit transition-state searches indicate that, via three transition states (TS1, TS2, and TS3) and two intermediate species (M1 and M2), the three-step “W-X-M” transformations convert the B global minimum into its isomer at room temperature (300 K) and vice versa. The maximum barriers are only 3.89 kcal/mol from to B and 2.1 kcal/mol from to B , rendering dynamic fluxionalities to these borospherenes. Therefore, the “W-X-M” transformation plays an important role in the borospherenes and borospherene-based nanostructures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd