Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4954032
1.
W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. 100, 12974 (1996).
http://dx.doi.org/10.1021/jp960669l
2.
Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006).
http://dx.doi.org/10.1021/ct0502763
3.
M. C Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
http://dx.doi.org/10.1103/RevModPhys.64.1045
4.
W. Kohn and L. J. Sham, Phys. Rev 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
5.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
6.
A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
7.
L. J. Sham and M. Schluter, Phys. Rev. Lett. 51, 1888 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.1888
8.
J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.1884
9.
P. Mori-Sanchez, A. J. Cohen, and W. Yang, Phys. Rev. Lett. 100, 146401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.146401
10.
M. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.5390
11.
F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).
http://dx.doi.org/10.1088/0034-4885/61/3/002
12.
M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys. Rev. Lett. 96, 226402 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.226402
13.
M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235102
14.
H. Jiang, P. Rinke, and M. Scheffler, Phys. Rev. B 86, 125115 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.125115
15.
J. Heyd and G. E. Scuseria, J. Chem. Phys. 121, 1187 (2004).
http://dx.doi.org/10.1063/1.1760074
16.
J. Heyd, J. E. Peralta, E. Scuseria, and R. L. Martin, J. Chem. Phys. 123, 174101 (2005).
http://dx.doi.org/10.1063/1.2085170
17.
J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Angyan, J. Chem. Phys. 124, 154709 (2006).
http://dx.doi.org/10.1063/1.2187006
18.
W. Chen and A. Pasquarello, Phys. Rev. B 86, 035134 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.035134
19.
S. J. Clark and J. Robertson, Phys. Rev. B 82, 085208 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085208
20.
R. Gillen, S. J. Clark, and J. Robertson, Phys. Rev. B 87, 125116 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.125116
21.
Y. Guo, S. J. Clark, and J. Robertson, J. Chem. Phys. 140, 054702 (2014).
http://dx.doi.org/10.1063/1.4863325
22.
J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
http://dx.doi.org/10.1063/1.1564060
23.
A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
http://dx.doi.org/10.1063/1.2404663
24.
J. E. Peralta, J. Heyd, G. E. Scuseria, and R. L. Martin, Phys. Rev. B 74, 073101 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.073101
25.
D. M. Bylander and L. Kleinman, Phys. Rev. B 41, 7868 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7868
26.
P. Feibelman, B. Hammer, J. K. Nørskov, F. Wagner, M. Scheffler, R. Stumpf, R. Watwe, and J. Dumesic, J. Phys. Chem. B 105, 4018 (2001).
http://dx.doi.org/10.1021/jp002302t
27.
L. Schimka, J. Harl, A. Stroppa, A. Gruneis, M. Marsman, F. Mittendorfer, and G. Kresse, Nat. Mater. 9, 741 (2010).
http://dx.doi.org/10.1038/nmat2806
28.
D.F. Ogletree, M.A. Van Hove, and G.A. Somorjai, Surf. Sci. 173, 351 (1986).
http://dx.doi.org/10.1016/0039-6028(86)90195-0
29.
G. S. Blackman, M. -L. Xu, D. F. Ogletree, M. A. Van Hove, and G. A. Somorjai, Phys. Rev. Lett. 61, 2352 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2352
30.
H. Steininger, S. Lehwald, and H. Ibach, Surf. Sci. 123, 264 (1982).
http://dx.doi.org/10.1016/0039-6028(82)90328-4
31.
H. Hopster and H. Ibach, Surf. Sci. 77, 109 (1978).
http://dx.doi.org/10.1016/0039-6028(78)90164-4
32.
G. Kresse, A. Gil, and P. Sautet, Phys. Rev. B 68, 073401 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.073401
33.
A. Gil, A. Clotet, J. M. Ricart, G. Kresse, M. Garcia-Hernandez, N. Rösch, and P. Sautet, Surf. Sci. 530, 71 (2003).
http://dx.doi.org/10.1016/S0039-6028(03)00307-8
34.
S. E. Mason, I. Grinberg, and A. M. Rappe, Phys. Rev. B 69, 161401 (2007).
http://dx.doi.org/10.1103/PhysRevB.69.161401
35.
A. Stroppa, K. Termentzidis, J. Paier, G. Kresse, and J. Hafner, Phys. Rev. B 76, 195440 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.195440
36.
Y. Wang, S. de Gironcoli, N. S. Hush, and J. R. Reimers, J. Am. Chem. Soc. 129, 10402 (2007).
http://dx.doi.org/10.1021/ja0712367
37.
Q. M. Hu, K. Reuter, and M. Scheffler, Phys. Rev. Lett. 98, 176103 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.176103
38.
A. Stroppa and G. Kresse, New J. Phys. 10, 063020 (2008).
http://dx.doi.org/10.1088/1367-2630/10/6/063020
39.
P. Lazić, M. Alaei, N. Atodiresei, V. Caciuc, R. Brako, and S. Blügel, Phys. Rev. B 81, 045401 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.045401
40.
C. Huang, M. Pavone, and E. Carter, J. Chem. Phys. 134, 154110 (2011).
http://dx.doi.org/10.1063/1.3577516
41.
B. G. Janesko, T. M. Henderson, and G. E. Scuseria, J. Chem. Phys. 131, 034110 (2009).
http://dx.doi.org/10.1063/1.3176514
42.
J. Paier, B. G. Janesko, T. M. Henderson, G. E. Scuseria, A. Grüneis, and G. Kresse, J. Chem. Phys. 132, 094103 (2010).
http://dx.doi.org/10.1063/1.3317437
43.
J. E. Moussa, P. A. Schultz, and J. R. Chelikowsky, J. Chem. Phys. 136, 204112 (2012).
http://dx.doi.org/10.1063/1.4722993
44.
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr. 220, 567 (2005).
45.
Y. Guo, J. Robertson, and S. J. Clark, J. Phys. Cond. Matt. 27, 025501 (2014).
http://dx.doi.org/10.1088/0953-8984/27/2/025501
46.
R. A. Van Santen, J. Chem. Soc. Faraday Trans. 83, 1915 (1987).
http://dx.doi.org/10.1039/f19878301915
47.
G. J. Blyholder, J. Phys. Chem. 68, 2772 (1964).
http://dx.doi.org/10.1021/j100792a006
48.
A. Fohlisch, M. Nyberg, J. Hasselström, O. Karis, L. G. M. Pettersson, and A. Nilsson, Phys. Rev. Lett. 85, 3309 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3309
49.
A. Fohlisch, M. Nyberg, P. Bennich, L. Triguero, J. Hasselström, O. Karis, L. G. M. Pettersson, and A. Nilsson, J. Chem. Phys. 112, 1946 (2000).
http://dx.doi.org/10.1063/1.480773
50.
T. Anazawa, I. Kinoshita, and Y. Matsumoto, J. Electron Spectrosc. Relat. Phenom. 88, 585 (1998).
http://dx.doi.org/10.1016/S0368-2048(97)00131-X
51.
G. Tsilimis, J. Kutzner, and H. Zacharias, Appl. Phys. A 76, 743 (2003).
http://dx.doi.org/10.1007/s00339-002-1496-3
52.
P. Hu, D. A. King, M. H. Lee, and M. C. Payne, Chem. Phys. Lett. 246, 73 (1995).
http://dx.doi.org/10.1016/0009-2614(95)01070-P
53.
V. Dose, J. Rogozik, A. M. Bradshaw, and K. C. Prince, Surf. Sci. 179, 90 (1987).
http://dx.doi.org/10.1016/0039-6028(87)90121-X
54.
G. Rangelov, N. Memmel, E. Bertel, and V. Dose, Surf. Sci. 251, 965 (1991).
http://dx.doi.org/10.1016/0039-6028(91)91134-J
55.
H. L. Skriver and N. M. Rosengaard, Phys. Rev. B 46, 7157 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.7157
56.
T. M. Soini, A. Genest, A. Nikodem, and N. Rösch, J. Chem. Theory Comput. 10, 4408 (2014).
http://dx.doi.org/10.1021/ct500703q
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4954032
Loading
/content/aip/journal/adva/6/6/10.1063/1.4954032
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4954032
2016-06-10
2016-12-10

Abstract

The screened exchange (sX) hybrid functional has been widely used in computational material science. Although it has widely been studied in bulk systems, less is known about its functional behavior in surface systems which are crucial to many technologies such as materials synthesis and nano-electronic devices. Assessing the screening dependent functional behaviors in the surface systems is therefore important for its application in such systems. In this work, we investigate the screening effects of the sX in CO adsorption on Pt(111) surface. The differences between the sX and Heyd-Scuseria-Ernzerhof (HSE06) hybrid functionals, and the effects of screening parameters are studied. The screening has two effects: first, the HOMO-LUMO gap is screening dependent. This affects the site preference most significantly. In this work, atop adsorption of CO/Pt(111) is predicted by the hybrid functionals with screened exchange potential. The sX(1.44) gives the largest HOMO-LUMO gap for the isolated CO molecule. The adsorption energy difference between the atop and fcc site is also the largest by the sX(1.44) which is explained by the reduced metal d states to the CO 2π* state back-donation, with stronger effect for the fcc adsorption than for the atop adsorption; second, the adsorption energy is screening dependent. This can be seen by comparing the sX(2.38) and HSE06 which have different screening strengths. They show similar surface band structures for the CO adsorption but different adsorption energies, which is explained by the stronger CO 5σ state to the metal d states donation or the effectively screened Pauli repulsion. This work underlines the screening strength as a main difference between sX and HSE06, as well as an important hybrid functional parameter for surface calculation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4954032.html;jsessionid=G681E6xlKv9zRzu73kYsM2xV.x-aip-live-06?itemId=/content/aip/journal/adva/6/6/10.1063/1.4954032&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4954032&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4954032'
Right1,Right2,Right3,