Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
K. A. Dick and P. Caroff, Nanoscale 6(6), 3006-3021 (2014).
F. Jabeen, S. Rubini, and F. Martelli, Microelectronics Journal 40(3), 442-445 (2009).
B. M. Borg, K. A. Dick, B. Ganjipour, M. E. Pistol, L. E. Wernersson, and C. Thelander, Nano Lett 10(10), 4080-4085 (2010).
A. W. Dey, J. Svensson, B. M. Borg, M. Ek, and L. E. Wernersson, Nano Lett 12(11), 5593-5597 (2012).
Q. Li, S. Huang, D. Pan, J. Wang, J. Zhao, and H. Q. Xu, Applied Physics Letters 105(11), 113106 (2014).
W. Wei, X. Y. Bao, C. Soci, Y. Ding, Z. L. Wang, and D. Wang, Nano Lett 9(8), 2926-2934 (2009).
J. A. Czaban, D. A. Thompson, and R. R. LaPierre, Nano Lett 9(1), 148-154 (2009).
J. Svensson, N. Anttu, N. Vainorius, B. M. Borg, and L. E. Wernersson, Nano Lett 13(4), 1380-1385 (2013).
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgstrom, Science 339(6123), 1057-1060 (2013).
P. K. Mohseni, A. Behnam, J. D. Wood, X. Zhao, K. J. Yu, N. C. Wang, A. Rockett, J. A. Rogers, J. W. Lyding, E. Pop, and X. Li, Adv Mater 26(22), 3755-3760 (2014).
X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409(6816), 66-69 (2001).
B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, Nano Lett 9(1), 112-116 (2009).
S. A. Choulis, A. Andreev, M. Merrick, A. R. Adams, B. N. Murdin, A. Krier, and V. V. Sherstnev, Applied Physics Letters 82(8), 1149 (2003).
J. Du, D. Liang, H. Tang, and X. P. Gao, Nano Lett 9(12), 4348-4351 (2009).
P. Offermans, M. Crego-Calama, and S. H. Brongersma, Nano Lett 10(7), 2412-2415 (2010).
V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. Bakkers, and L. P. Kouwenhoven, Science 336(6084), 1003-1007 (2012).
R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys Rev Lett 105(7), 077001 (2010).
M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Nano Lett 12(12), 6414-6419 (2012).
M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Sci Rep 4, 7261 (2014).
A. M. Morales, Science 279(5348), 208-211 (1998).
X. Duan and C. M. Lieber, Advanced Materials 12(4), 298-302 (2000).<298::AID-ADMA298>3.0.CO;2-Y
M. Jeppsson, K. A. Dick, H. A. Nilsson, N. Sköld, J. B. Wagner, P. Caroff, and L.-E. Wernersson, Journal of Crystal Growth 310(23), 5119-5122 (2008).
C. Thelander, P. Caroff, S. b. Plissard, and K. A. Dick, Applied Physics Letters 100(23), 232105 (2012).
K. A. Dick, K. Deppert, L. S. Karlsson, L. R. Wallenberg, L. Samuelson, and W. Seifert, Advanced Functional Materials 15(10), 1603-1610 (2005).
U. Philipose, G. Sapkota, J. Salfi, and H. E. Ruda, Semiconductor Science and Technology 25(7), 075004 (2010).
H. D. Park, S. M. Prokes, M. E. Twigg, R. C. Cammarata, and A.-C. Gaillot, Applied Physics Letters 89(22), 223125 (2006).
K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, Nano Lett 8(10), 3475-3480 (2008).
J. Kumar Panda, A. Roy, A. Singha, M. Gemmi, D. Ercolani, V. Pellegrini, and L. Sorba, Applied Physics Letters 100(14), 143101 (2012).
N. Begum, M. Piccin, F. Jabeen, G. Bais, S. Rubini, F. Martelli, and A. S. Bhatti, Journal of Applied Physics 104(10), 104311 (2008).
S. N. Mohammad, Journal of Applied Physics 107(11), 114304 (2010).
M. Brewster, O. Schimek, S. Reich, and S. Gradecak, Physical Review B 80(20), (2009).
K. G. Eyink, W. Xu, A. Chin, L. Ye, C.-Z. Ning, H. Yu, F. Szmulowicz, and D. L. Huffaker, Proc. SPIE 7224 (2009) Quantum Dots, Particles, and Nanoclusters VI 72240G-72240G-72247.
D. Behr, J. Wagner, J. Schmitz, N. Herres, J. D. Ralston, P. Koidl, M. Ramsteiner, L. Schrottke, and G. Jungk, Applied Physics Letters 65(23), 2972 (1994).

Data & Media loading...


Article metrics loading...



Crystalline III-V semiconductor nanowires have great potential in fabrication of nanodevices for applications in nanoelectronics and optoelectronics, and for studies of novel physical phenomena. Sophisticated epitaxy techniques with precisely controlled growth conditions are often used to prepare high quality III-V nanowires. The growth process and cost of these experiments are therefore dedicated and very high. Here, we report a simple but generic method to synthesize III-V nanowires with high crystal quality. The technique employs a closed evacuated tube vessel with a small tube carrier containing a solid source of materials and another small tube carrier containing a growth substrate inside. The growth of nanowires is achieved after heating the closed vessel in a furnace to a preset high temperature and then cooling it down naturally to room temperature. The technique has been employed to grow InAs, GaAs, and GaSb nanowires on Si/SiO substrates. The as-grown nanowires are analyzed by SEM, TEM and Raman spectroscopy and the results show that the nanowires are high quality zincblende single crystals. No particular condition needs to be adjusted and controlled in the experiments. This technique provides a convenient way of synthesis of III-V semiconductor nanowires with high material quality for a wide range of applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd