Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4954080
1.
K. A. Dick and P. Caroff, Nanoscale 6(6), 3006-3021 (2014).
http://dx.doi.org/10.1039/c3nr06692d
2.
F. Jabeen, S. Rubini, and F. Martelli, Microelectronics Journal 40(3), 442-445 (2009).
http://dx.doi.org/10.1016/j.mejo.2008.06.001
3.
B. M. Borg, K. A. Dick, B. Ganjipour, M. E. Pistol, L. E. Wernersson, and C. Thelander, Nano Lett 10(10), 4080-4085 (2010).
http://dx.doi.org/10.1021/nl102145h
4.
A. W. Dey, J. Svensson, B. M. Borg, M. Ek, and L. E. Wernersson, Nano Lett 12(11), 5593-5597 (2012).
http://dx.doi.org/10.1021/nl302658y
5.
Q. Li, S. Huang, D. Pan, J. Wang, J. Zhao, and H. Q. Xu, Applied Physics Letters 105(11), 113106 (2014).
http://dx.doi.org/10.1063/1.4896105
6.
W. Wei, X. Y. Bao, C. Soci, Y. Ding, Z. L. Wang, and D. Wang, Nano Lett 9(8), 2926-2934 (2009).
http://dx.doi.org/10.1021/nl901270n
7.
J. A. Czaban, D. A. Thompson, and R. R. LaPierre, Nano Lett 9(1), 148-154 (2009).
http://dx.doi.org/10.1021/nl802700u
8.
J. Svensson, N. Anttu, N. Vainorius, B. M. Borg, and L. E. Wernersson, Nano Lett 13(4), 1380-1385 (2013).
9.
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgstrom, Science 339(6123), 1057-1060 (2013).
http://dx.doi.org/10.1126/science.1230969
10.
P. K. Mohseni, A. Behnam, J. D. Wood, X. Zhao, K. J. Yu, N. C. Wang, A. Rockett, J. A. Rogers, J. W. Lyding, E. Pop, and X. Li, Adv Mater 26(22), 3755-3760 (2014).
http://dx.doi.org/10.1002/adma.201305909
11.
X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409(6816), 66-69 (2001).
http://dx.doi.org/10.1038/35051047
12.
B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, Nano Lett 9(1), 112-116 (2009).
http://dx.doi.org/10.1021/nl802636b
13.
S. A. Choulis, A. Andreev, M. Merrick, A. R. Adams, B. N. Murdin, A. Krier, and V. V. Sherstnev, Applied Physics Letters 82(8), 1149 (2003).
http://dx.doi.org/10.1063/1.1555276
14.
J. Du, D. Liang, H. Tang, and X. P. Gao, Nano Lett 9(12), 4348-4351 (2009).
http://dx.doi.org/10.1021/nl902611f
15.
P. Offermans, M. Crego-Calama, and S. H. Brongersma, Nano Lett 10(7), 2412-2415 (2010).
http://dx.doi.org/10.1021/nl1005405
16.
V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. Bakkers, and L. P. Kouwenhoven, Science 336(6084), 1003-1007 (2012).
http://dx.doi.org/10.1126/science.1222360
17.
R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys Rev Lett 105(7), 077001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.077001
18.
M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Nano Lett 12(12), 6414-6419 (2012).
http://dx.doi.org/10.1021/nl303758w
19.
M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Sci Rep 4, 7261 (2014).
http://dx.doi.org/10.1038/srep07261
20.
A. M. Morales, Science 279(5348), 208-211 (1998).
http://dx.doi.org/10.1126/science.279.5348.208
21.
X. Duan and C. M. Lieber, Advanced Materials 12(4), 298-302 (2000).
http://dx.doi.org/10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y
22.
M. Jeppsson, K. A. Dick, H. A. Nilsson, N. Sköld, J. B. Wagner, P. Caroff, and L.-E. Wernersson, Journal of Crystal Growth 310(23), 5119-5122 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.07.061
23.
C. Thelander, P. Caroff, S. b. Plissard, and K. A. Dick, Applied Physics Letters 100(23), 232105 (2012).
http://dx.doi.org/10.1063/1.4726037
24.
K. A. Dick, K. Deppert, L. S. Karlsson, L. R. Wallenberg, L. Samuelson, and W. Seifert, Advanced Functional Materials 15(10), 1603-1610 (2005).
http://dx.doi.org/10.1002/adfm.200500157
25.
U. Philipose, G. Sapkota, J. Salfi, and H. E. Ruda, Semiconductor Science and Technology 25(7), 075004 (2010).
http://dx.doi.org/10.1088/0268-1242/25/7/075004
26.
H. D. Park, S. M. Prokes, M. E. Twigg, R. C. Cammarata, and A.-C. Gaillot, Applied Physics Letters 89(22), 223125 (2006).
http://dx.doi.org/10.1063/1.2398917
27.
K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, Nano Lett 8(10), 3475-3480 (2008).
http://dx.doi.org/10.1021/nl802398j
28.
J. Kumar Panda, A. Roy, A. Singha, M. Gemmi, D. Ercolani, V. Pellegrini, and L. Sorba, Applied Physics Letters 100(14), 143101 (2012).
http://dx.doi.org/10.1063/1.3698115
29.
N. Begum, M. Piccin, F. Jabeen, G. Bais, S. Rubini, F. Martelli, and A. S. Bhatti, Journal of Applied Physics 104(10), 104311 (2008).
http://dx.doi.org/10.1063/1.3026726
30.
S. N. Mohammad, Journal of Applied Physics 107(11), 114304 (2010).
http://dx.doi.org/10.1063/1.3311800
31.
M. Brewster, O. Schimek, S. Reich, and S. Gradecak, Physical Review B 80(20), (2009).
http://dx.doi.org/10.1103/PhysRevB.80.201314
32.
K. G. Eyink, W. Xu, A. Chin, L. Ye, C.-Z. Ning, H. Yu, F. Szmulowicz, and D. L. Huffaker, Proc. SPIE 7224 (2009) Quantum Dots, Particles, and Nanoclusters VI 72240G-72240G-72247.
33.
D. Behr, J. Wagner, J. Schmitz, N. Herres, J. D. Ralston, P. Koidl, M. Ramsteiner, L. Schrottke, and G. Jungk, Applied Physics Letters 65(23), 2972 (1994).
http://dx.doi.org/10.1063/1.112480
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4954080
Loading
/content/aip/journal/adva/6/6/10.1063/1.4954080
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4954080
2016-06-10
2016-09-27

Abstract

Crystalline III-V semiconductor nanowires have great potential in fabrication of nanodevices for applications in nanoelectronics and optoelectronics, and for studies of novel physical phenomena. Sophisticated epitaxy techniques with precisely controlled growth conditions are often used to prepare high quality III-V nanowires. The growth process and cost of these experiments are therefore dedicated and very high. Here, we report a simple but generic method to synthesize III-V nanowires with high crystal quality. The technique employs a closed evacuated tube vessel with a small tube carrier containing a solid source of materials and another small tube carrier containing a growth substrate inside. The growth of nanowires is achieved after heating the closed vessel in a furnace to a preset high temperature and then cooling it down naturally to room temperature. The technique has been employed to grow InAs, GaAs, and GaSb nanowires on Si/SiO substrates. The as-grown nanowires are analyzed by SEM, TEM and Raman spectroscopy and the results show that the nanowires are high quality zincblende single crystals. No particular condition needs to be adjusted and controlled in the experiments. This technique provides a convenient way of synthesis of III-V semiconductor nanowires with high material quality for a wide range of applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4954080.html;jsessionid=atfehAtMs3QReRF4uiJQS-Zy.x-aip-live-06?itemId=/content/aip/journal/adva/6/6/10.1063/1.4954080&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4954080&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4954080'
Right1,Right2,Right3,