Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. –L. Bridot, A. –C. Faure, S. Laurent, C. Rivière, C. Billotey, B. Hiba, M. Janier, V. Josserand, J. –L. Coll, L. V. Elst, R. Muller, S. Roux, P. Perriat, and O. Tillement, “Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging,” J. Am. Chem. Soc. 129, 5076-5084 (2007).
M. Engström, A. Klasson, H. Pedersen, C. Vahlberg, P. –O. Käll, and K. Uvdal, “High proton relaxivity for gadolinium oxide nanoparticles,” Magn. Reson. Mater. Phys. 19, 180-186 (2006).
M. –A. Fortin, R. M. Petoral, Jr., F. Söderlind, A. Klasson, M. Engström, T. Veres, P. –O. Käll, and K. Uvdal, “Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning,” Nanotechnology 18, 395501 (9 pages) (2007).
M. Ahrén, L. Selegård, A. Klasson, F. Söderlind, N. Abrikossova, C. Skoglund, T. Bengtsson, M. Engström, P. –O. Käll, and K. Uvdal, “Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement,” Langmuir 26, 5753-5762 (2010).
J. Miyawaki, M. Yudasaka, H. Imai, H. Yorimitsu, H. Isobe, E. Nakamura, and S. Iijima, “Synthesis of ultrafine Gd2O3 nanoparticles inside single-wall carbon nanohorns,” J. Phys. Chem. B 110, 5179-5181 (2006).
R. M. Petoral, Jr., F. Söderlind, A. Klasson, A. Suska, M. A. Fortin, N. Abrikossova, L. Selegård, P. –O. Käll, M. Engström, and K. Uvdal, “Synthesis and characterization of Tb3+-doped Gd2O3 nanocrystals: a bifunctional material with combined fluorescent labeling and MRI contrast agent properties,” J. Phys. Chem. C 113, 6913-6920 (2009).
I. –F. Li, C. –H. Su, H. –S. Sheu, H. –C. Chiu, Y. –W. Lo, W. –T. Lin, J. –H. Chen, and C. –S. Yeh, “Gd2O(CO3)2.H2O particles and the corresponding Gd2O3: synthesis and applications of magnetic resonance contrast agents and template particles for hollow spheres and hybrid composites,” Adv. Funct. Mater. 18, 766-776 (2008).
H. Hifumi, S. Yamaoka, A. Tanimoto, D. Citterio, and K. Suzuki, “Gadolinium-based hybrid nanoparticles as a positive MR contrast agent,” J. Am. Chem. Soc. 128, 15090-15091 (2006).
A.-A. Guay-Bégin, P. Chevallier, L. Faucher, S. Turgeon, and M.-A. Fortin, “Surface modification of gadolinium oxide thin films and nanoparticles using poly(ethylene glycol)-phosphate,” Langmuir 28, 774-782 (2012).
N. J. J. Johnson, W. Oakden, G. J. Stanisz, R. S. Prosser, and F. C. J. M. van Veggel, “Size-tunable, ultrasmall NaGdF4 nanoparticles: insight into their T1 MRI contrast enhancement,” Chem. Mater. 23, 3714-3722 (2011).
I.-F. Li and C. -S. Yeh, “Synthesis of Gd doped CdSe nanoparticles for potential optical and MR imaging applications,” J. Mater. Chem. 20, 2079-2081 (2010).
F. Evanics, P. R. Diamente, F. C. J. M. van Veggel, G. J. Stanisz, and R. S. Prosser, “Water-soluble GdF3 and GdF3/LaF3 nanoparticles-physical characterization and NMR relaxation properties,” Chem. Mater. 18, 2499-2505 (2006).
W. J. Rieter, K. M. L. Taylor, H. An, W. Lin, and W. Lin, “Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents,” J. Am. Chem. Soc. 128, 9024-9025 (2006).
G. H. Lee, Y. Chang, and T. J. Kim, “Blood-pool and targeting MRI contrast agents: from Gd-chelates to Gd-nanoparticles,” Eur. J. Inorg. Chem. 1924-1933 (2012).
W. Xu, K. Kattel, J. Y. Park, Y. Chang, T. J. Kim, and G. H. Lee, “Paramagnetic nanoparticle T1 and T2 MRI contrast agents,” Phys. Chem. Chem. Phys. 14, 12687-12700 (2012).
T. J. Kim, K. S. Chae, Y. Chang, and G. H. Lee, “Gadolinium oxide nanoparticles as potential multimodal imaging and therapeutic agents,” Curr. Top. Med. Chem. 13, 422-433 (2013).
J. Y. Park, M. J. Baek, E. S. Choi, S. Woo, J. H. Kim, T. J. Kim, J. C. Jung, K. S. Chae, Y. Chang, and G. H. Lee, “Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images,” ACS Nano 3, 3663-3669 (2009).
Y. Gossuin, A. Hocq, Q. L. Vuong, S. Disch, R. P. Hermann, and P. Gillis, “Physico-chemical and NMR relaxometric characterization of gadolinium hydroxide and dysprosium oxide nanoparticles,” Nanotechnology 19, 475102 (8 pages) (2008).
M. Norek, E. Kampert, U. Zeitler, and J. A. Peters, “Tuning of the size of Dy2O3 nanoparticles for optimal performance as an MRI contrast agent,” J. Am. Chem. Soc. 130, 5335-5340 (2008).
C. R. Kim, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, and G. H. Lee, “Ligand-size dependent water proton relaxivities in ultrasmall gadolinium oxide nanoparticles and in vivo T1 MR images in a 1.5 T MR field,” Phys. Chem. Chem. Phys. 16, 19866-19873 (2014).
R. B. Lauffer, “Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design,” Chem. Rev. 87, 901-927 (1987).
K. Kattel, J. Y. Park, W. Xu, H. G. Kim, E. J. Lee, B. A. Bony, W. C. Heo, J. J. Lee, S. Jin, J. S. Baeck, Y. Chang, T. J. Kim, J. E. Bae, K. S. Chae, and G. H. Lee, “A facile synthesis, in vitro and in vivo MR studies of D-glucuronic acid-coated ultrasmall Ln2O3 (Ln = Eu, Gd, Dy, Ho, and Er) nanoparticles as a new potential MRI contrast agent,” ACS Appl. Mater. Interfaces 3, 3325-3334 (2011).
P. Caravan, J. J. Ellison, T. J. McMurry, and R. B. Lauffer, “Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications,” Chem. Rev. 99, 2293-2352 (1999).
A. Roch, R. N. Muller, and P. Gillis, “Theory of proton relaxation induced by superparamagnetic particles,” J. Chem. Phys. 110, 5403-5411 (1999).
M. Norek, G. A. Pereira, C. F. G. C. Geraldes, A. Denkova, W. Zhou, and J. A. Peters, “NMR transversal relaxivity of suspensions of lanthanide oxide nanoparticles,” J. Phys. Chem. C 111, 10240-10246 (2007).
B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Publishing Company, Reading, pp. 616 (1972).
F. Söderlind, H. Pedersen, R. M. Petoral, Jr., P. -O. Käll, and K. Uvdal, “Synthesis and characterization of Gd2O3 nanocrystals functionalized by organic acids,” J. Colloid Interface Sci. 288, 140-148 (2005).
JCPDS-International Centre for Diffraction Data, card no. 43-1014, PCPDFWIN, vol. 1.30 (1997).
O. W. Duckworth and S. T. Martin, “Surface complexation and dissolution of hematite by C1-C6 dicarboxylic acids at pH = 5.0,” Geochim. Cosmochim. Acta 65, 4289-4301 (2001).
S. J. Hug and D. Bahnemann, “Infrared spectra of oxalate, malonate and succinate adsorbed on the aqueous surface of rutile, anatase and lepidocrocite measured with in situ ATR-FTIR,” J. Electron Spectro. Related Phenomena 150, 208-219 (2006).
S. J. Hug and B. Sulzberger, “In situ fourier transform infrared spectroscopic evidence for the formation of several different surface complexes of oxalate on TiO2 in the aqueous phase,” Langmuir 10, 3587-3597 (1994).
C. B. Mendive, T. Bredow, M. A. Blesa, and D. W. Bahnemann, “ATR-FTIR measurements and quantum chemical calculations concerning the adsorption and photoreaction of oxalic acid on TiO2,” Phys. Chem. Chem. Phys. 8, 3232-3247 (2006).
W. Xu, J. Y. Park, K. Kattel, M. W. Ahmad, B. A. Bony, W. C. Heo, S. Jin, J. W. Park, Y. Chang, T. J. Kim, J. A. Park, J. Y. Do, K. S. Chae, and G. H. Lee, “Fluorescein-polyethyleneimine coated gadolinium oxide nanoparticles as T1 magnetic resonance imaging (MRI)-cell labeling (CL) dual agents,” RSC Adv. 2, 10907-10915 (2012).
R. G. Pearson, “Hard and soft acids and bases,” J. Am. Chem. Soc. 85, 3533-3539 (1963).
R. G. Pearson, “Hard and soft acids and bases, HSAB, part 1: fundamental principles,” J. Chem. Educ. 45, 581-587 (1968).
R. G. Pearson, “Hard and soft acids and bases, HSAB, part II: underlying theories,” J. Chem. Educ. 45, 643-648 (1968).
M. K. Corbierre, N. S. Cameron, and R. B. Lennox, “Polymer-stabilized gold nanoparticles with high grafting densities,” Langmuir 20, 2867-2873 (2004).
Aldrich Catalog, pp. 1260 (2005-2006).
J. Fang, P. Chandrasekharan, X.-L. Liu, Y. Yang, Y.-B. Lv, C.-T. Yang, and J. Ding, “Manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T1-weighted MR imaging,” Biomaterials 35, 1636-1642 (2014).

Data & Media loading...


Article metrics loading...



The relaxometric properties of ultrasmall GdO nanoparticles coated with various ligands were investigated. These ligands include small diacids with hydrophobic chains, namely, succinic acid (M = 118.09 amu), glutaric acid (M = 132.12 amu), and terephthalic acid (M = 166.13 amu), and large polyethylenimines (PEIs) with hydrophilic chains, namely, PEI-1300 () and PEI-10000 (). Ligand-size and ligand-chain hydrophilicity effects were observed. The longitudinal (r) and transverse (r) water proton relaxivities generally decreased with increasing ligand-size (the ligand-size effect). The ligand-size effect was weaker for PEI because its hydrophilic chains allow water molecules to access the nanoparticle (the ligand-chain hydrophilicity effect). This result was explained on the basis of the magnetic dipole interaction between the dipoles of the nanoparticle and water proton. In addition, all samples were found to be non-toxic in cellular cytotoxicity tests.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd