Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4954292
1.
K. D. Collins, Biophys. J. 72, 65 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78647-8
2.
R. R. Netz and D. Andelman, Phys. Rep. 380, 1 (2003).
http://dx.doi.org/10.1016/S0370-1573(03)00118-2
3.
A Y. Grosberg, T. T. Nguyen, and B. I. Shklovskii, Rev. Mod. Phys. 74, 329 (2003).
http://dx.doi.org/10.1103/RevModPhys.74.329
4.
W. Kunz and R. Neueder, in Specific Ion Effects, edited by W. Kunz (World Scientific Publishing, Singapore, 2009), p. 11.
5.
M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, Nat. Mater. 9, 101 (2010).
http://dx.doi.org/10.1038/nmat2614
6.
R. Yang, H. Wu, Y. Cao, and G. C. Bazan, J. Am. Chem. Soc. 128, 14422 (2006).
http://dx.doi.org/10.1021/ja063723c
7.
Y. Wang, B. Liu, A. Mikhailovsky, and G. C. Bazan, Adv. Mater. 22, 656 (2010).
http://dx.doi.org/10.1002/adma.200902675
8.
C. Werner, Advances in Polymer Science: Polymers for Regenerative Medicine (Springer, Dresden, 2006).
9.
H. Noguchi, “Ionene Polymers,” in Polymeric materials encyclopedia, edited by J. C. Salomone (CRC Press, Boca Raton, London, New York, Tokyo, 1996), p. 3392.
10.
S. Punyani and H. Singh, J. Appl. Polym. Sci. 102, 1038 (2006).
http://dx.doi.org/10.1002/app.24181
11.
A. N. Zelikin, D. Putnam, P. Shastri, R. Langer, and V. A. Izumrudov, Bioconjugate Chem. 13, 548 (2002).
http://dx.doi.org/10.1021/bc015553t
12.
A. N. Zelikin, A. A. Litmanovich, V. V. Paraschuk, A. V. Sybatchin, and V. A. Izumrudov, Macromolecules 36, 2066 (2003).
http://dx.doi.org/10.1021/ma021361x
13.
E. S. Trukhanova, V. A. Izumrudov, A. A. Litmanovich, and A. N. Zelikin, Biomacromolecules 6, 3198 (2005).
http://dx.doi.org/10.1021/bm050536i
14.
W. Jaeger, J. Bohrisch, and A. Laschewsky, Prog. Polym. Sci. 35, 511 (2010).
http://dx.doi.org/10.1016/j.progpolymsci.2010.01.002
15.
J. Bachl, D. Zanuy, D. E. López-Pérez, G. Revilla-López, C. Cativiela, C. Alemán, and D. Díaz Díaz, Adv. Funct. Mater. 24, 4893 (2014).
http://dx.doi.org/10.1002/adfm.201304230
16.
S. Čebašek, M. Lukšič, C. Pohar, and V. Vlachy, J. Chem. Engn. Data 56, 1282 (2011).
http://dx.doi.org/10.1021/je101136a
17.
M. Lukšič, M. Bončina, V. Vlachy, and M. Druchok, Phys. Chem. Chem. Phys. 14, 2024 (2012).
http://dx.doi.org/10.1039/c2cp23137a
18.
M. Seručnik, M. Bončina, M. Lukšič, and V. Vlachy, Phys. Chem. Chem. Phys. 14, 6805 (2012).
http://dx.doi.org/10.1039/c2cp40571g
19.
K. Arh and C. Pohar, Acta Chim. Slov. 48, 385 (2001).
20.
M. Lukšič, B. Hribar-Lee, R. Büchner, and V. Vlachy, Phys. Chem. Chem. Phys. 11, 10053 (2009).
http://dx.doi.org/10.1039/b914938b
21.
S. Čebašek, M. Seručnik, and V. Vlachy, J. Phys. Chem. B 117, 3682 (2013).
http://dx.doi.org/10.1021/jp401313f
22.
P. Rodič, M. Bratuša, M. Lukšič, B. Hribar–Lee, and V. Vlachy, Colloids and Surfaces A: Physicochemical and Engineering Aspects 424, 18 (2013).
http://dx.doi.org/10.1016/j.colsurfa.2013.02.021
23.
M. Bončina, M. Lukšič, M. Seručnik, and V. Vlachy, Molec. Phys. 112, 1222 (2014).
http://dx.doi.org/10.1080/00268976.2013.871365
24.
N. Malikova, S. Čebašek, V. Glenisson, D. Bhowmik, G. Carrot, and V. Vlachy, Phys. Chem. Chem. Phys. 14, 12898 (2012).
http://dx.doi.org/10.1039/c2cp41859b
25.
N. Malikova, A.-L. Rollet, S. Čebašek, M. Tomšič, and V. Vlachy, Phys. Chem. Chem. Phys. 17, 5650 (2015).
http://dx.doi.org/10.1039/C4CP05469E
26.
M. Druchok, B. Hribar-Lee, H. Krienke, and V. Vlachy, Chem. Phys. Letters 450, 281 (2008).
http://dx.doi.org/10.1016/j.cplett.2007.11.024
27.
M. Druchok, V. Vlachy, and K. A. Dill, J. Chem. Phys. 130, 134903 (2009).
http://dx.doi.org/10.1063/1.3078268
28.
M. Druchok, K. A. Dill, and V. Vlachy, J. Phys. Chem. B 113, 14270 (2009).
http://dx.doi.org/10.1021/jp906727h
29.
M. Druchok, M. Lukšič, and V. Vlachy, J. Chem. Phys. 137, 014511 (2012).
http://dx.doi.org/10.1063/1.4731718
30.
G. S. Manning, J. Chem. Phys. 51, 924 (1969).
http://dx.doi.org/10.1063/1.1672157
31.
I. Chorny, K. A. Dill, and M. P. Jacobson, J. Phys. Chem. B 109, 24056 (2005).
http://dx.doi.org/10.1021/jp055043m
33.
W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).
http://dx.doi.org/10.1021/ja9621760
34.
G. Palinkas, O. Riede, and K. Heinzinger, Z. Naturforsch. A 32, 1197 (1977).
35.
H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).
http://dx.doi.org/10.1021/j100308a038
36.
S. Melchionna, G. Ciccotti, and B. L. Holian, Molec. Phys. 78, 533 (1993).
http://dx.doi.org/10.1080/00268979300100371
37.
D. Wu, A. Chen, and C. S. Johnson, Jr., J. Magn. Reson. A 115, 260 (1995).
http://dx.doi.org/10.1006/jmra.1995.1176
38.
E. Fukushima and S. B. W. Roeder, Experimental Pulse NMR (Addison-Wesley, Reading, 1981).
39.
I. P. Gerothanassis, Prog. Nucl. Magn. Reson. Spectrosc. 19, 267 (1987).
http://dx.doi.org/10.1016/0079-6565(87)80005-5
40.
S. Zhang, X. Wu, and M. Mehring, Chem. Phys. Lett. 173, 481 (1990).
http://dx.doi.org/10.1016/0009-2614(90)87239-N
41.
W. Zhang and I. Furo, Biopolymers 33, 1709 (1993).
http://dx.doi.org/10.1002/bip.360331108
42.
D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calve, B. Alonso, J.O. Durand, B. Bujoli, Z.H. Gan, and G. Hoatson, Magn. Reson. Chem. 40, 70 (2002).
http://dx.doi.org/10.1002/mrc.984
43.
R. W. Impey, P. A. Madden, and I. R. McDonald, J. Phys. Chem. 87, 5071 (1983).
http://dx.doi.org/10.1021/j150643a008
44.
D. Laage and J. T. Hynes, J. Phys. Chem B 112, 7697 (2008).
http://dx.doi.org/10.1021/jp802033r
45.
G. Lamoureux and B. Roux, J. Phys. Chem. B 110, 3308 (2006).
http://dx.doi.org/10.1021/jp056043p
46.
U. Scheler, Curr. Opin. Colloid Interface Sci. 14, 212 (2009).
http://dx.doi.org/10.1016/j.cocis.2009.02.001
47.
N. Hedin and I. Furo, J. Phys. Chem. B 103, 9640 (1999).
http://dx.doi.org/10.1021/jp991687g
48.
J. R. C. Van der Maarel, Concept Nucl. Magn. Reson. Part A 19A, 97 (2003).
http://dx.doi.org/10.1002/cmr.a.10087
49.
D. E. Woessner, Concept Nucl. Magn. Reson. 13(5), 294 (2001).
http://dx.doi.org/10.1002/cmr.1015
50.
B. Halle, J. Chem. Phys. 94, 3150 (1991).
http://dx.doi.org/10.1063/1.460689
51.
B. Halle, H. Wennerström, and L. Piculell, J. Phys. Chem. 88, 2482 (1984).
http://dx.doi.org/10.1021/j150656a013
52.
B. Halle, D. Bratko, and L. Piculell, Ber. Bunsen-Ges. Phys. Chem. 89, 1254 (1985).
http://dx.doi.org/10.1002/bbpc.19850891204
53.
J. Kříž, J. Dybal, and D. Kurková, J. Phys. Chem. A 106, 7971 (2002).
http://dx.doi.org/10.1021/jp020282k
54.
Y. Marcus, J. Solution Chem. 37, 1071 (2008).
http://dx.doi.org/10.1007/s10953-008-9291-1
55.
D. Bhowmik, N. Malikova, G. Mériguet, O. Bernard, J. Teixeira, and P. Turq, Phys. Chem. Chem. Phys. 16, 13447 (2014).
http://dx.doi.org/10.1039/c4cp01164c
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4954292
Loading
/content/aip/journal/adva/6/6/10.1063/1.4954292
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4954292
2016-06-15
2016-12-10

Abstract

Counter-ion binding and mobility in aqueous solutions of partially hydrophobic ionene oligoions is studied here by a combination of all-atomic molecular dynamics (MD) simulations and NMR (19F and 81Br nuclei) measurements. We present results for 12, 12–ionenes in the presence of different halide ions (F, Cl, Br and I), as well as their mixtures; the latter allowing us to probe counter-ion selectivity of these oligoions. We consolidate both structural and dynamic information, in particular simulated radial distribution functions and average residence times of counter-ions in the vicinity of ionenes and NMR data in the form of counter-ion chemical shift and self-diffusion coefficients. On one hand, previously reported enthalpy of dilution and mixing measurements show a reverse counter-ion sequence for 12, 12–ionenes with respect to their less hydrophobic 3, 3– and 6, 6– analogues. On the other hand, the current MD and NMR data, reflecting the counter-ion binding tendencies to the ionene chain, give evidence for the same ordering as that observed by MD for 3, 3–ionenes. This is not seen as a contradiction and can be rationalized on the basis of increasing chain hydrophobicity, which has different consequences for enthalpy and ion-binding. The latter is reflecting free energy changes and as such includes both enthalpic and entropic contributions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4954292.html;jsessionid=5R9cGxCoSaOazhfC5vVV3amL.x-aip-live-03?itemId=/content/aip/journal/adva/6/6/10.1063/1.4954292&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4954292&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4954292'
Right1,Right2,Right3,