Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4954296
1.
M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007).
http://dx.doi.org/10.1063/1.2800290
2.
C. C. Pan, Q. Yan, H. Fu, Y. Zhao, Y. R. Wu, C. G. Van de Walle, S. Nakamura, and S. P. DenBaars, Electron. Lett. 51, 1187 (2015).
http://dx.doi.org/10.1049/el.2015.1647
3.
E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, Appl. Phys. Lett. 98, 161107 (2011).
http://dx.doi.org/10.1063/1.3570656
4.
Y. C. Shen, G. O. Müller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).
http://dx.doi.org/10.1063/1.2785135
5.
V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, Phys. Rev. B 60, 8849 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.8849
6.
X. Huang, H. Fu, H. Chen, Z. Lu, D. Ding, and Y. Zhao, J. Appl. Phys. accepted (2016).
7.
J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, Phys. Rev. Lett. 110, 177406 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.177406
8.
F. Bertazzi, M. Goano, and E. Bellotti, Appl. Phys. Lett. 97, 231118 (2010).
http://dx.doi.org/10.1063/1.3525605
9.
J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, Appl. Phys. Lett. 92, 261103 (2008).
http://dx.doi.org/10.1063/1.2953543
10.
E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, Appl. Phys. Lett. 98, 161107 (2011).
http://dx.doi.org/10.1063/1.3570656
11.
H. Y. Ryu, D. S. Shin, and J. I. Shim, Appl. Phys. Lett. 100, 131109 (2012).
http://dx.doi.org/10.1063/1.3698113
12.
G. B. Lin, D. Meyaard, J. Cho, E. F. Schubert, H. Shim, and C. Sone, Appl. Phys. Lett. 100, 161106 (2012).
http://dx.doi.org/10.1063/1.4704366
13.
C. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, Appl. Phys. Express 5, 062103 (2012).
http://dx.doi.org/10.1143/APEX.5.062103
14.
Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 4, 082104 (2011).
http://dx.doi.org/10.1143/APEX.4.082104
15.
D. L. Becerra, Y. Zhao, S. H. Oh, C. D. Pynn, K. Fujito, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 105, 171106 (2014).
http://dx.doi.org/10.1063/1.4900793
16.
H. Fu, Z. Lu, X. Huang, H. Chen, and Y. Zhao, J. Appl. Phys. 119, 174502 (2016).
http://dx.doi.org/10.1063/1.4948667
17.
P. Walterweit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature (London) 406, 865 (2000).
http://dx.doi.org/10.1038/35022529
18.
Y. Zhao, J. Sonoda, I. Koslow, C. C. Pan, H. Ohta, J. S. Ha, S. P. Denbaars, and S. Nakamura, Jpn. J. Appl. Phys. 49, 070206 (2010).
http://dx.doi.org/10.1143/JJAP.49.070206
19.
H. Chen, H. Fu, Z. Lu, X. Huang, and Y. Zhao, Opt. Express 24, A856 (2016).
http://dx.doi.org/10.1364/OE.24.00A856
20.
A. David and M. J. Grundmann, Appl. Phys. Lett. 96, 103504 (2010).
http://dx.doi.org/10.1063/1.3330870
21.
S. Nakamura and M.R. Krames, Proc. IEEE 101, 2211 (2013).
http://dx.doi.org/10.1109/JPROC.2013.2274929
22.
E. Kioupakis, Q. Yan, D. Steiauf, and C. G. Van de Walle, New J. Phys. 15, 125006 (2013).
http://dx.doi.org/10.1088/1367-2630/15/12/125006
23.
J. Hader, J. V. Moloney, and S. W. Koch, Proc. SPIE 6115, 61151T (2006).
http://dx.doi.org/10.1117/12.641744
24.
E. Kioupakis, Q. Yan, and C. G. Van de Walle, Appl. Phys. Lett. 101, 231107 (2012).
http://dx.doi.org/10.1063/1.4769374
25.
Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 6, 062102 (2013).
http://dx.doi.org/10.7567/APEX.6.062102
26.
D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, J. Disp. Technol. 9, 190 (2013).
http://dx.doi.org/10.1109/JDT.2012.2227682
27.
H. Fu, Z. Lu, X. Zhao, Y. H. Zhang, S. P. DenBaars, S. Nakamura, and Y. Zhao, J. Disp. Technol., accepted (2015).
28.
M. Funato, A. Kaneta, Y. Kawakami, Y. Enya, K. Nishizuka, M. Ueno, and T. Nakamura, Appl. Phys. Express 3, 021002 (2010).
http://dx.doi.org/10.1143/APEX.3.021002
29.
T. Wunderer, P. Bruckner, J. Hertkorn, F. Scholz, G. J. Beirne, M. Jetter, P. Michler, M. Feneberg, and K. Thonke, Appl. Phys. Lett. 90, 171123 (2007).
http://dx.doi.org/10.1063/1.2734498
30.
D. S. Sizov, R. Bhat, A. Zakharian, K. Song, D. E. Allen, S. Coleman, and C. E. Zah, IEEE J. Sel. Top. Quantum Electron. 17, 1390 (2011).
http://dx.doi.org/10.1109/JSTQE.2011.2116770
31.
S. H. Park, J. Appl. Phys. 91, 9904 (2002).
http://dx.doi.org/10.1063/1.1480465
32.
M. Funato, A. Kaneta, Y. Kawakami, Y. Enya, K. Nishizuka, M. Ueno, and T. Nakamura, Appl. Phys. Express 3, 021002 (2010).
http://dx.doi.org/10.1143/APEX.3.021002
33.
K. J. Vampola, N. N. Fellows, H. Masui, S. E. Brinkley, M. Furukawa, R. B. Chung, H. Sato, J. Sonoda, H. Hirasawa, M. Iza, S. P. DenBaars, and S. Nakamura, Phys. Stat. Sol. A 206, 200 (2009).
http://dx.doi.org/10.1002/pssa.200880411
34.
Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, J. Phys. D, Appl. Phys. 43, 354002 (2010).
http://dx.doi.org/10.1088/0022-3727/43/35/354002
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4954296
Loading
/content/aip/journal/adva/6/6/10.1063/1.4954296
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4954296
2016-06-15
2016-12-02

Abstract

We study the low efficiency droop characteristics of semipolar InGaN light-emitting diodes (LEDs) using modified rate equation incoporating the phase-space filling (PSF) effect where the results on -plane LEDs are also obtained and compared. Internal quantum efficiency (IQE) of LEDs was simulated using a modified model with different PSF filling (n), Shockley-Read-Hall (), radiative (), Auger () coefficients and different active layer thickness (), where the PSF effect showed a strong impact on the simulated LED efficiency results. A weaker PSF effect was found for low-droop semipolar LEDs possibly due to small quantum confined Stark effect, short carrier lifetime, and small average carrier density. A very good agreement between experimental data and the theoretical modeling was obtained for low-droop semipolar LEDs with weak PSF effect. These results suggest the low droop performance may be explained by different mechanisms for semipolar LEDs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4954296.html;jsessionid=ROwDMl-FvLaBlWBdZKoukcZF.x-aip-live-02?itemId=/content/aip/journal/adva/6/6/10.1063/1.4954296&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4954296&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4954296'
Right1,Right2,Right3,