Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4954396
1.
K. Mitchell and J.A. Ibers, Chem. Rev. 102, 1929 (2002).
http://dx.doi.org/10.1021/cr010319h
2.
X.-Y. Huang, J. Li, Y. Zhang, and A. Mascarenhas, J. Am. Chem. Soc. 125, 7049 (2003).
http://dx.doi.org/10.1021/ja0343611
3.
J.M. Steward, W.S. Chen, W.E. Deveny, R.A. Mickelson, S.K. Deb, and A. Zunger, in Proceedings of the 7th Conference on Ternary and Multinary Compounds (Materials Research Society, Pittsburgh, PA, 1987), p. 59.
4.
D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M.G. Kanatzidis, Science 287(5455), 10241027 (2000).
http://dx.doi.org/10.1126/science.287.5455.1024
5.
B.V. Roboucha, A. Kisiel, A. Marcelli, M. Cestelli Guidi, M. Piccinini, E. Burattini, and A. Mycielski, “Statistical model of sphalerite structured quaternary A1-xBxY yZ1-y systems,” Journal of Alloys and Compounds 426(1–2), 3142 (2006).
http://dx.doi.org/10.1016/j.jallcom.2006.02.012
6.
N.N. Berchenko, V.E. Krevs, and V.G. Sredin, Poluprovodnikovye tverdye rastvory AIIBV Ii ikh primenenie (Solid Solutions between II–VI Semiconductors and Their Applications) (Moscow: Voenizdat, 1982).
7.
R.K. Ahrenkiel, B.M. Keyes, D.L. Levi, Keith A. Emery, T. L. Chu, and S. S. Chu, “Spatial Uniformity of Minority-Carrier Lifetime in Polycrystalline CdTe Solar Cells,” Appl. Phys. Lett. 64(21), 28792881 (1994).
http://dx.doi.org/10.1063/1.111402
8.
A. Parich, S.D. Pearson, T.K. Tran et al., “Growth and Characterization of HgCdTe Heterostructures by Metalorganic Molecular Beam Epitaxy,” J. Cryst. Growth 159(1-4), 11521156 (1996).
http://dx.doi.org/10.1016/0022-0248(95)00846-2
9.
Cs. Szeles and M.C. Driver, Proc. of. Proc.SPIE Int.Soc.Opt.Eng. 3446(1), 29. SPIE, San Diego, CA, USA,(1998).
10.
M. Schieber, T.E. Schlesinger, R.B. James, H. Hermon, H. Yoon, and M. Goorsky, J. Crystal Growth 237–239(3), 20822090 (2002).
http://dx.doi.org/10.1016/S0022-0248(01)02314-4
11.
T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James, Mater. Sci. Eng. 32, 103189 (2001).
http://dx.doi.org/10.1016/S0927-796X(01)00027-4
12.
T.E. Schlesinger, B. Brunett, H. Yao, J. Van Scyoc, R.B. James, S. Egarievwe, K. Chattopadhyay, X. Ma, A. Burger, N. Giles, U. El-Hanany, A. Shahar, and A. Tsigelman, J. Electron. Mater. 28(6), 864 (1999).
http://dx.doi.org/10.1007/s11664-999-0085-z
13.
F.P. Doty, in Proceedings of the Presentation at the 1998US Workshopon the Physics and Chemistry of II–VI Semiconductors, Charleston, SC, 21–22 October (1998).
14.
L. Chibani, M. Hage-Ali, and P. Siffert, J. Crystal Growth 161(1-4), 153158 (1996).
http://dx.doi.org/10.1016/0022-0248(95)00626-5
15.
M. Fiederle, A. Fauler, J. Konrath, V. Babentsov, J. Franc, and R.B. James, IEEE Trans. Nucl. Sci. 51(4), 18641868 (2004).
http://dx.doi.org/10.1109/TNS.2004.832958
16.
T.E. Schlesinger and R.B. James (eds.), in Semiconductors and Semimetals (Academic Press, San Diego, 1995), Vol. 43.
17.
T. Asahi, O. Oda, Y. Taniguchi, and A. Koyama, J. Crystal Growth 161(1-4), 2027 (1996).
http://dx.doi.org/10.1016/0022-0248(95)00606-0
18.
F. Bassani, S. Tatarenko, K. Saminadayar, J. Bleuse, N. Magnea, and J.L. Pautrat, Appl. Phys. Lett. 58(23), 26512653 (1991).
http://dx.doi.org/10.1063/1.104797
19.
M. B. Reine, Fundamental properties of mercury cadmium telluride Encyclopedia of Modern Optics (Academic Press, London, 2004).
20.
D. G. Seiler, S. Mayo, and J. R. Lowney, Semicond. Sci. Technol. 8, 753776 (1993).
http://dx.doi.org/10.1088/0268-1242/8/6S/001
21.
K. Hacini, H. Meradji, S. Ghemid, and F. El Haj Hassan, Chin. Phys. B 21(3), 036102 (2012).
http://dx.doi.org/10.1088/1674-1056/21/3/036102
22.
M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J. Phys.: Condens. Matter 14(11), 27172744 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/301
23.
T. H. Fischer and J. Almlöf, J. Phys. Chem. 96, 97689774 (1992).
http://dx.doi.org/10.1021/j100203a036
24.
H.J. Monkhorst and J.D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 51885192 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
25.
M. Androulidaki, N. T. Pelekanos, K. Tsagaraki, E. Dimakis, and E. Iliopoulos, Phys. Status Solidi C 3(6), 18661869 (2006).
http://dx.doi.org/10.1002/pssc.200565280
26.
J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, S.X. Li, E.E. Haller, Hai Lu, and William J. Schaff, Solid State Communications 127, 411414 (2003).
http://dx.doi.org/10.1016/S0038-1098(03)00457-5
27.
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, PA, 1976).
28.
J. F. Nye, Physical Properties of Crystals (Oxford, Clarendon, 1957).
29.
M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford, Clarendon, 1956).
30.
Z. J. Wu, E.J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, and J. Meng, Phys. Rev. B 76, 054115 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.054115
31.
H. Zhai, X. Li, and J. Du, Materials Transactions 53(7), 12471251 (2012).
http://dx.doi.org/10.2320/matertrans.M2011373
32.
K. A. Matori, M. H. M. Zaid, H. A. A. Sidek, M. K. Halimah, Z. A. Wahab, and M. G. M. Sabri, Int., J.Physical Sciences 5, 22122216 (2010).
33.
A. V. Ponomareva, E. I. Isaev, Yu. Kh. Vekilov, and I. A. Abrikosov, Phys. Review B 85, 144117 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.144117
34.
D.P. Rai, M.P. Ghimire, and R.K. Thapa, “A DFT study of BeX (X = S, Se, Te) semiconductor: modified Becke Johnson (mBJ) potential,” Semiconductor Physics and Technology 48(11), 14471457 (2014).
35.
P.H. Mott, J.R. Dorgan, and C.M. Roland, J. Sound and Vibrations 312(4), 572575 (2008).
http://dx.doi.org/10.1016/j.jsv.2008.01.026
36.
V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, Phys. Status Solidi, Rapid Res. Lett. 3, 8991 (2007).
http://dx.doi.org/10.1002/pssr.200600116
37.
I. N. Frantsevich, F. F. Voronov, and S. A. Bokuta, in Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, edited by I.N. Frantsevich (Naukova DumkaKiev, 1983), Vol. 60.
38.
Y. Shena and Z. Zhou, J. Appl. Phys. 103, 074113074118 (2008).
http://dx.doi.org/10.1063/1.2902433
39.
L. Kleinman, “Deformation potentials in silicon, 1. uniaxial strain,” Phys. Rev. 128(6), 26142621 (1962).
http://dx.doi.org/10.1103/PhysRev.128.2614
40.
X. Zhang, P. Kung, A. Saxler, D. Walker, T. Wang, and M. Razeghi, Acta Physica Polonica A 88(4), (1995).
41.
J.R. Chrisman, Fundamentals of Solid State Physics (John Wiley & Sons, New York, 1988), pp. 217218.
42.
I. Johnston, G. Keeler, R. Rollins, and S. Spicklemire, Solid State Physics Simulations, The Consortium for Upper-Level Physics Software (John Wiley, New York, 1996), pp. 4559.
43.
E. Schreiber, O.L. Anderson, and N. Soga, Elastic Constants and their Measurements (McGraw-Hill, New York, 1973), pp. 102105.
44.
M. Fox, Optical Properties of Solids, Oxford Master Series in Con-densed Matter Physics (Oxford University Press, Oxford, New York, 2001).
45.
M. Dadsetani and A. Pourghazi, Phys. Rev. B 73, 195102195108 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.195102
46.
F. Wooten, Optical Properties of Solids (Academic, New York, 1972).
47.
S. M. Hosseini, Physica B 403, 19071915 (2008).
http://dx.doi.org/10.1016/j.physb.2007.10.370
48.
R. Khenata, A. Bouhemadou, M. Sahnoun, A.H. Reshak, H. Baltache, and M. Rabah, Comput. Mater. Sci. 38(1), 2938 (2006).
http://dx.doi.org/10.1016/j.commatsci.2006.01.013
49.
Z. Hongsheng, Y. Tao, and W. Deqi, “First Principles Calculations of the Electronic and Optical Properties in CdxZnl−xSe Ternary Alloys,” Journal of Ningxia University (Natural Science Edition) 33(1), 4349 (2012).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4954396
Loading
/content/aip/journal/adva/6/6/10.1063/1.4954396
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4954396
2016-06-16
2016-09-25

Abstract

Structural, optical and electronic properties and elastic constants of Cd1 Zn Hg Te alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers–Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard’s law. It is seen that results obtained from theory and experiments are all in agreement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4954396.html;jsessionid=Q2wtYYd3lxYYp0wnX8whzQkL.x-aip-live-06?itemId=/content/aip/journal/adva/6/6/10.1063/1.4954396&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4954396&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4954396'
Right1,Right2,Right3,