Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4954397
1.
S. Noda, “Seeking the Ultimate Nanolaser,” Science 314, 260 (2006).
http://dx.doi.org/10.1126/science.1131322
2.
S. Iwahashi, K. Sakai, Y. Kurosaka, and S. Noda, “Centered-rectangular lattice photonic-crystal surface-emitting lasers,” Phy. Rev. B 85, 035304 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.035304
3.
Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” NATURE PHOTONICS 6, 56-61 (2012).
http://dx.doi.org/10.1038/nphoton.2011.286
4.
S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic Crystal Point-Shift Nanolasers With and Without Nanoslots—Design, Fabrication, Lasing, and Sensing Characteristics,” IEEE J. Sel. Top. Quantum Electron. 17, 1632 (2011).
http://dx.doi.org/10.1109/JSTQE.2011.2134837
5.
A. Sugitatsu and S. Noda, “Room temperature operation of 2D photonic crystal slab defect-waveguide laser with optical pump,” Electron. Lett. 39, 213 (2003).
http://dx.doi.org/10.1049/el:20030097
6.
K. Inoue, H. Sasaki, K. Ishida, Y. Sugimoto, N. Ikeda, Y. Tanaka, S. Ohkouchi, Y. Nakamura, and K. Asakawa, “InAs quantum-dot laser utilizing GaAs photonic-crystal line-defect waveguide,” Opt. Exp. 12, 5502 (2004).
http://dx.doi.org/10.1364/OPEX.12.005502
7.
S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow Operating Energy Electrically Driven Photonic Crystal Lasers,” IEEE Select. Topics Quant. Electron. 19, 4900311 (2013).
http://dx.doi.org/10.1109/JSTQE.2013.2249048
8.
K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baetys, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
http://dx.doi.org/10.1088/1367-2630/8/9/208
9.
A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron. 30, 1172 (1994).
http://dx.doi.org/10.1109/3.303676
10.
K. Inoue, H. Oda, A. Yamanaka, N. Ikeda, H. Kawashima, Y. Sugimoto, and K. Asakawa, “Dramatic density-of-state enhancement of Raman scattering at the band edge in one-dimensional photonic-crystal waveguide,” Phys. Rev. A 78, 011805(R) (2008).
http://dx.doi.org/10.1103/PhysRevA.78.011805
11.
H. Oda, K. Inoue, A. Yamanaka, N, Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93, 051114 (2008).
http://dx.doi.org/10.1063/1.2965110
12.
K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slowlight photonic-crystal slab waveguides of linedefect,” Opt. Exp. 17, 7206 (2009).
http://dx.doi.org/10.1364/OE.17.007206
13.
N. Ozaki, K. Takeuchi, S. Ohkouchi, N. Ikeda, Y. Sugimoto, H. Oda, K. Asakawa, and R. A. Hogg, “Monolithically grown multi-color InAs quantum dots as a spectral-shape-controllable near-infrared broadband light source,” Appl. Phys. Lett. 103, 051121 (2013).
http://dx.doi.org/10.1063/1.4817386
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4954397
Loading
/content/aip/journal/adva/6/6/10.1063/1.4954397
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4954397
2016-06-16
2016-12-07

Abstract

The development of small sized laser operating above room temperature is important in the realization of optical integrated circuits. Recently, micro-lasers consisting of photonic crystals (PhCs) and whispering gallery mode cavities have been demonstrated. Optically pumped laser devices could be easily designed using photonic crystal-slab waveguides (PhC-WGs) with an air-bridge type structure. In this study, we observe lasing at 1.3μm from two-photon pumped InAs-quantum-dots embedded GaAs PhC-WGs above room temperature. This type of compact laser shows promise as a new light source in ultra-compact photonics integrated circuits.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4954397.html;jsessionid=yO9EYfZKph7_v9jjdiMctAA1.x-aip-live-03?itemId=/content/aip/journal/adva/6/6/10.1063/1.4954397&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4954397&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4954397'
Right1,Right2,Right3,