Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys. 76, 2023-2026 (1994).
M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324 (1995).
R. Moussa, B. Wang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76(23), 235417 (2007).
S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguide,” Appl. Phys. Lett. 86(8), 081110 (2005).
H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92(9), 092114 (2008).
S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80(5), 960963 (1998).
M. Belotti, M. Galli, D. Gerace, L. C. Andreani, G. Guizzetti, A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “All-optical switching in silicon-on-insulator photonic wire nano-cavities,” Opt. Express 18(2), 14501461 (2010).
D. Sridharan, R. Bose, H. Kim, G. S. Solomon, and E. Waks, “A reversibly tunable photonic crystal nanocavity laser using photochromic thin film,” Opt. Express 19(6), 55515558 (2011).
Kadir Üstün and Hamza Kurt, “Compact coupling of light from conventional photonic wire to slow light waveguides,” J. Appl. Phys. 110, 113109 (2011).
H. Kurt, I. H. Giden, and D. S. Citrin, “Design of T-shaped nanophotonic wire waveguide for optical interconnection in H-tree network,” Opt. Express 19, 26827-26838 (2011).
Lingling Zhang, Qiwen Zhan, Binfeng Yun, Jiayu Zhang, and Yiping Cui, “Multichannel routing of diffraction-inhibited beams in two-dimensional photonic crystals,” Opt. Express 19, 9890-9895 (2011).
K. Callo and G. Assanto, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314 (2001).
R. Philip, M. Anija, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Passive all-optical diode using asymmetric nonlinear absorption,” Appl. Phys. Lett. 91, 141118 (2007).
A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Optics Express 15, 323-8328 (2007).
M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E 71, 037602 (2005).
X. Y. Hu, X. Chin, Z. Q. Li, and Q. H. Gong, “Ultrahigh-contrast all-optical diodes based on tunable surface plasmon polaritons,” New Journal of Physics 12, 023029 (2010).
R. Philip, M. Anija, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Passive all-optical diode using asymmetric nonlinear absorption,” Appl. Phys. Lett. 91, 141118 (2007).
K. Callo and G. Assanto, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314 (2001).
C. H. Xue, H. T. Jiang, and H. Chen, “Highly efficient all-optical diode action based on light-tunneling heterostructures,” Opt. Express 18, 7479 (2010).
J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J.W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid crystal heterojunctions,” Nat. Mater. 4, 383 (2005).
M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Simple electro-tunable optical diode using photonic and anisotropic liquid crystal films,” Thin Solid Films 509, 49-52 (2006).
D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Lett. 15, 5264-5270 (2007).
B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nature Photonics 3, 206-210 (2009).
M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).
M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739-2741 (2003).
M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 253902 (2000).
N. S. Zhao, H. Zhou, Q. Guo, W. Hu, X. B. Yang, S. Lan, and X. S. Lin, “Design of highly efficient optical diodes based on the dynamics of nonlinear photonic crystal molecules,” J. Opt. Soc. Am. B 23, 2434-2440 (2006).
X. S. Lin, W. Q. Wu, H. Zhou, K. F. Zhou, and S. Lan, “Enhancement of unidirectional transmission through the coupling of nonlinear photonic crystal defects,” Opt. Express 14, 2429-2439 (2006).
H. Zhou, K. F. Zhou, W. Hu, Q. Guo, S. Lan, X. S. Lin, and A. V. Gopal, “All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs,” J. Appl. Phys. 99, 123111 (2006).
Yi Yu, Yaohui Chen, Hao Hu, Weiqi Xue, Kresten Yvind, and Jesper Mork, “Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9, 241-247 (2015).

Data & Media loading...


Article metrics loading...



A high efficiency all-optical diode based on photonic crystal (PC) waveguide has been proposed and numerically investigated by finite-difference time-domain (FDTD) method. The structure is asymmetrically coupled by a micro-cavity containing nonlinear Kerr medium and a FP cavity at sides of PC waveguide. Because of interference between two cavities, Fano peak and FP peak can both appear in transmission spectra and unidirectional transmission can be achieved. The working wavelength can set between two peaks and near to the Fano peak. For forward launch with suitable light intensity, nonlinear Kerr effect of micro-cavity can been excited. It will result in red shift of Fano peak and achieving forward transmission. But for backward launch, a stronger incidence light is needed to the excite Kerr effect due to the design of asymmetric structure. This design has many advantages, including high maximum transmittance, high transmittance contrast ratio, low power threshold, short response time, and ease of integration.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd