Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4954696
1.
W. Heywang, K. Lubitz, and W. Wersing, Piezoelectricity: evolution and future of a technology (Springer Science & Business Media, Heidelberg, 2008).
2.
R. S. Yang, Y. Qin, L. M. Dai, and Z. L. Wang, Nat. Nanotechnol. 4, 3439 (2009).
http://dx.doi.org/10.1038/nnano.2008.314
3.
J. Lee, W. Choi, Y. K. Yoo, K. S. Hwang, S. M. Lee, S. Kang, J. Kim, and J. H. Lee, Sensors 14, 2219922207 (2014).
http://dx.doi.org/10.3390/s141222199
4.
D. J. Shin, S. J. Jeong, C. E. Seo, K. H. Cho, and J. H. Koh, Ceram. Int. 41, S686S690 (2015).
http://dx.doi.org/10.1016/j.ceramint.2015.03.180
5.
S. Nakamura, H. Numasato, K. Sato, M. Kobayashi, and I. Naniwa, Microsyst. Technol. 8, 149154 (2002).
http://dx.doi.org/10.1007/s00542-002-0180-z
6.
X. Chen, S. Y. Xu, N. Yao, and Y. Shi, Nano Lett. 10, 21332137 (2010).
http://dx.doi.org/10.1021/nl100812k
7.
Z. L. Wang, Adv. Func. Mater. 18, 35533567 (2008).
http://dx.doi.org/10.1002/adfm.200800541
8.
T. Zimmermann, M. Neuburger, P. Benkart, F. J. Hernández-Guillén, C. Pietzka, M. Kunze, I. Daumiller, A. Dadgar, A. Krost, and E. Kohn, IEEE Electr. Device Lett. 27, 309312 (2006).
http://dx.doi.org/10.1109/LED.2006.872918
9.
R. Agrawal and H. D. Espinosa, Nano Lett. 11, 786790 (2011).
http://dx.doi.org/10.1021/nl104004d
10.
Y. F. Lin, J. H. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, Appl. Phys. Lett. 92, 022105 (2008).
http://dx.doi.org/10.1063/1.2831901
11.
Z. L. Wang, J. Phys.: Condens. Matter 16, R829R858 (2004).
http://dx.doi.org/10.1088/0953-8984/16/25/R01
12.
Z. L. Wang, Nano Today 5, 540552 (2010).
http://dx.doi.org/10.1016/j.nantod.2010.10.008
13.
X. D. Wang, J. Zhou, J. H. Song, J. Liu, N. S. Xu, and Z. L. Wang, Nano Lett. 6, 27682772 (2006).
http://dx.doi.org/10.1021/nl061802g
14.
S. S. Kwon, W. K. Hong, G. Jo, J. Maeng, T. W. Kim, S. Song, and T. Lee, Adv. Mater. 20, 45574562 (2008).
http://dx.doi.org/10.1002/adma.200800691
15.
A. Menzel, K. Subannajui, F. Güder, D. Moser, O. Paul, and M. Zacharias, Adv. Func. Mater. 21, 43424348 (2011).
http://dx.doi.org/10.1002/adfm.201101549
16.
Z. L. Wang, Mater. Today 10, 2028 (2007).
http://dx.doi.org/10.1016/S1369-7021(07)70076-7
17.
J. H. He, P. H. Chang, C. Y. Chen, and K. T. Tsai, Nanotechnology 20, 135701 (2009).
http://dx.doi.org/10.1088/0957-4484/20/13/135701
18.
Y. F. Gao and Z. L. Wang, Nano Lett. 9, 11031110 (2009).
http://dx.doi.org/10.1021/nl803547f
19.
Y. Zhang, Y. F. Hu, S. Xiang, and Z. L. Wang, Appl. Phys. Lett. 97, 033509 (2010).
http://dx.doi.org/10.1063/1.3467815
20.
Y. Zhang, Y. Liu, and Z. L. Wang, Adv. Mater. 23, 30043013 (2011).
http://dx.doi.org/10.1002/adma.201100906
21.
B. Sen, M. Stroscio, and M. Dutta, J. Appl. Phys. 110, 024506 (2011).
http://dx.doi.org/10.1063/1.3603036
22.
M. T. Hoang, J. Yvonnet, A. Mitrushchenkov, and G. Chambaud, J. Appl. Phys. 113, 014309 (2013).
http://dx.doi.org/10.1063/1.4773333
23.
S. X. Dai, M. L. Dunn, and H. S. Park, Nanotechnology 21, 445707 (2010).
http://dx.doi.org/10.1088/0957-4484/21/44/445707
24.
K. Momeni, G. M. Odegard, and R. S. Yassar, Acta Mater. 60, 51175124 (2012).
http://dx.doi.org/10.1016/j.actamat.2012.06.041
25.
S. X. Dai and H. S. Park, J. Mech. Phys. Solids 61, 385397 (2013).
http://dx.doi.org/10.1016/j.jmps.2012.10.003
26.
G. H. Zhang, X. Luo, Y. Zheng, and B. Wang, Phys. Chem. Chem. Phys. 14, 70517058 (2012).
http://dx.doi.org/10.1039/c2cp23652d
27.
J. Zhu, W. J. Chen, G. H. Zhang, and Y. Zheng, Phys. Chem. Chem. Phys. 17, 2558325592 (2015).
http://dx.doi.org/10.1039/C5CP03945B
28.
J. H. Lee, W. J. Lee, S. H. Lee, S. M. Kim, S. Kim, and H. M. Jang, Phys. Chem. Chem. Phys. 17, 78577863 (2015).
http://dx.doi.org/10.1039/C4CP06094F
29.
W. Liu, A. H. Zhang, Y. Zhang, and Z. L. Wang, Nano Energy 14, 355363 (2015).
http://dx.doi.org/10.1016/j.nanoen.2014.10.014
30.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
31.
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 1116911186 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
32.
G. Kresse and J. Hafner, Phys. Rev. B 48, 1311513118 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.13115
33.
P. E. Blöchl, Phys. Rev. B 50, 1795317979 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
34.
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 51885192 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
35.
Y. F. Dong and L. J. Brillson, J. Electron. Mater. 37, 743748 (2008).
http://dx.doi.org/10.1007/s11664-007-0295-1
36.
T. Kamiya, K. Tajima, K. Nomura, H. Yanagi, and H. Hosono, Phys. Stat. Sol. A 205, 19291933 (2008).
http://dx.doi.org/10.1002/pssa.200778850
37.
L. Colombo, R. Resta, and S. Baroni, Phys. Rev. B 44, 55725579 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.5572
38.
J. Junquera, M. H. Cohen, and K. M. Rabe, J. Phys.: Condens. Matter 19, 213203 (2007).
http://dx.doi.org/10.1088/0953-8984/19/21/213203
39.
G. H. Zhang, Y. Zheng, and B. Wang, J. Appl. Phys. 114, 044111 (2013).
http://dx.doi.org/10.1063/1.4816796
40.
X. Gonze and C. Lee, Phys. Rev. B 55, 1035510368 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.10355
41.
X. F. Wu, D. Vanderbilt, and D. R. Hamann, Phys. Rev. B 72, 035105 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.035105
42.
C. Q. Qin, Y. S. Gu, X. Sun, X. Q. Wang, and Y. Zhang, Nano Res. 8, 2073-2081 (2015).
http://dx.doi.org/10.1007/s12274-015-0718-x
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4954696
Loading
/content/aip/journal/adva/6/6/10.1063/1.4954696
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4954696
2016-06-17
2016-12-11

Abstract

Piezoelectricity is closely related with the performance and application of piezoelectric devices. It is a crucial issue to understand its detailed fundamental for designing functional devices with more peculiar performances. Basing on the first principles simulations, the ZnO piezoelectric tunnel junction is taken as an example to systematically investigate its piezoelectricity (including the piezopotential energy, piezoelectric field, piezoelectric polarization and piezocharge) and explore their correlation. The comprehensive picture of the piezoelectricity in the ZnO tunnel junction is revealed at atomic scale and it is verified to be the intrinsic characteristic of ZnO barrier, independent of its terminated surface but dependent on its c axis orientation and the applied strain. In the case of the ZnO c axis pointing from right to left, an in-plane compressive strain will induce piezocharges (and a piezopotential energy drop) with positive and negative signs (negative and positive signs) emerging respectively at the left and right terminated surfaces of the ZnO barrier. Meanwhile a piezoelectric polarization (and a piezoelectric field) pointing from right to left (from left to right) are also induced throughout the ZnO barrier. All these piezoelectric physical quantities would reverse when the applied strain switches from compressive to tensile. This study provides an atomic level insight into the fundamental behavior of the piezoelectricity of the piezoelectric tunnel junction and should have very useful information for future designs of piezoelectric devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4954696.html;jsessionid=g3LNuHhBK5JvtADhi6nEHK-o.x-aip-live-02?itemId=/content/aip/journal/adva/6/6/10.1063/1.4954696&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4954696&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4954696'
Right1,Right2,Right3,