Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4954697
1.
M. I. Bichurin, V. M. Petrov, O. V. Ryabkov, S. V. Averkin, and G. Srinivasan, Physical Review B 72, 060408 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.060408
2.
G. Srinivasan, C. De Vreugd, V. Laletin, N. Paddubnaya, M. Bichurin, V. Petrov, and D. Filippov, Physical Review B 71, 184423 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.184423
3.
H. M. Jang, J. H. Park, S. Ryu, and S. R. Shannigrahi, Applied Physics Letters 93, 252904 (2008).
http://dx.doi.org/10.1063/1.3050533
4.
J. Ma, J. Hu, Z. Li, and C. W. Nan, Advanced Materials 23, 1062 (2011).
http://dx.doi.org/10.1002/adma.201003636
5.
W. Wei, J. J. Ye, W. Jie, L. S. Zhou, X. B. Luo, and Z. Ning, Journal of Magnetism & Magnetic Materials 366, 40 (2014).
http://dx.doi.org/10.1016/j.jmmm.2014.04.062
6.
T. Miyazaki and N. Tezuka, Journal of Magnetism & Magnetic Materials 139 (1995).
http://dx.doi.org/10.1016/0304-8853(95)90001-2
7.
J. F. Scott, Journal of Materials Chemistry 22, 4567 (2012).
http://dx.doi.org/10.1039/c2jm16137k
8.
P. Li, Y. M. Wen, X. Huang, J. Yang, J. Wen, J. Qiu, Y. Zhu, and M. Yu, Sensors & Actuators A Physical 201, 164 (2013).
http://dx.doi.org/10.1016/j.sna.2013.07.005
9.
D. A. Pan, Y. Bai, A. A. Volinsky, W. Y. Chu, and L. J. Qiao, Applied Physics Letters 92, 052904 (2008).
http://dx.doi.org/10.1063/1.2841709
10.
C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, Journal of Applied Physics 103, 031101 (2008).
http://dx.doi.org/10.1063/1.2836410
11.
M. I. Bichurin, V. M. Petrov, and G. Srinivasan, Physical Review B 68, 575 (2003).
12.
J. G. Wan, J. M. Liu, H. L. W. Chand, C. L. Choy, G. H. Wang, and C. W. Nan, Journal of Applied Physics 93, 9916 (2003).
http://dx.doi.org/10.1063/1.1577404
13.
S. Dong and J. Zhai, Chinese Science Bulletin 53, 2113 (2008).
http://dx.doi.org/10.1007/s11434-008-0326-1
14.
C. P. Zhao, F. Fang, and W. Yang, Smart Materials & Structures 19, 125004 (2010).
http://dx.doi.org/10.1088/0964-1726/19/12/125004
15.
J. Zhang, P. Li, Y. Wen, W. He, A. Yang, and C. Lu, Sensors & Actuators A Physical 214, 149 (2014).
http://dx.doi.org/10.1016/j.sna.2014.04.037
16.
X. M. Yin, N. Zhang, and J. C. Bao, Physics Letters A 361, 434 (2008).
http://dx.doi.org/10.1016/j.physleta.2006.09.066
17.
L. Yang, J. Tang, W. Wang, X. Luo, and N. Zhang, Journal of Sensor Technology 1, 81 (2011).
http://dx.doi.org/10.4236/jst.2011.13011
18.
I. Fina, N. Dix, L. Fàbrega, F. Sánchez, and J. Fontcuberta, Thin Solid Films 518, 4634 (2010).
http://dx.doi.org/10.1016/j.tsf.2009.12.048
19.
J. Wang, M. Ye, and C. Wang, Applied Physics Letters 95, 152901 (2009).
http://dx.doi.org/10.1063/1.3249584
20.
J. Van Suchtelen, Philips Res. Rep 27, 28 (1972).
21.
C. Israel, V. M. Petrov, G. Srinivasan, and N. D. Mathur, Applied Physics Letters 95, 072505 (2009).
http://dx.doi.org/10.1063/1.3205477
22.
S. N. Babu, A. Siddeshwar, K. Srinivas, S. V. Suryanarayana, and T. Bhimasankaram, Journal of Materials Science 44, 3948 (2009).
http://dx.doi.org/10.1007/s10853-009-3534-4
23.
P. Yu, J. S. Lee, S. Okamoto, M. D. Rossell, M. Huijben, C. H. Yang, Q. He, J. X. Zhang, S. Y. Yang, and M. J. Lee, Physical Review Letters 105, 027201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.027201
24.
W. Wang, X. B. Luo, N. Zhang, and Q. Y. Ma, Sensors & Actuators A Physical 171, 248 (2011).
http://dx.doi.org/10.1016/j.sna.2011.09.006
25.
W. Wei, X. X. Xu, L. S. Zhou, X. B. Luo, and Z. Ning, Journal of Applied Physics 114, 064101 (2013).
http://dx.doi.org/10.1063/1.4817735
26.
Y. P. Yao, Y. Hou, S. N. Dong, and X. G. Li, Journal of Applied Physics 110, 014508 (2011).
http://dx.doi.org/10.1063/1.3603042
27.
W. Wang, J. J. Ye, J. Wu, X. B. Luo, N. Zhang, and L. S. Zhou, Sensors & Actuators A Physical 214, 219 (2014).
http://dx.doi.org/10.1016/j.sna.2014.04.023
28.
W. Wang, J. Wu, X. Luo, L. Zhou, X. Xu, and Q. Ma, Sensors & Actuators A Physical 225, 47 (2015).
http://dx.doi.org/10.1016/j.sna.2015.02.003
29.
W. Wang, Z. Wang, X. Luo, J. Tao, N. Zhang, X. Xu, and L. Zhou, Applied Physics Letters 107, 5449 (2015).
30.
M. B. Moffett, A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. McLaughlin, The Journal of the Acoustical Society of America 89, 1448 (1991).
http://dx.doi.org/10.1121/1.400678
31.
D. A. Filippov, U. Laletsin, and G. Srinivasan, Journal of Applied Physics 102, 093901 (2007).
http://dx.doi.org/10.1063/1.2803656
32.
Y. W. Gao and J. J. Zhang, Acta Mechanica Sinica 28, 385 (2012).
http://dx.doi.org/10.1007/s10409-012-0002-1
33.
Y. Shi and Y. W. Gao, Journal of Magnetism & Magnetic Materials 360, 131 (2014).
http://dx.doi.org/10.1016/j.jmmm.2014.02.028
34.
X. J. Zheng and X. E. Liu, Journal of Applied Physics 97, 053901 (2005).
http://dx.doi.org/10.1063/1.1850618
35.
H. M. Zhou, Q. Chen, S. X. Qu, and M. H. Li, Journal of Alloys & Compounds 631, 165 (2015).
http://dx.doi.org/10.1016/j.jallcom.2015.01.100
36.
R. Ding, X. Su, J. Zhang, and Y. Gao, Journal of Applied Physics 115, 074104 (2014).
http://dx.doi.org/10.1063/1.4866364
37.
H. Kaiju, S. Fujita, T. Morozumi, and K. Shiiki, Journal of Applied Physics 91, 7430 (2002).
http://dx.doi.org/10.1063/1.1451754
38.
J. G. Wan, Z. Y. Li, Y. Wang, M. Zeng, G. H. Wang, and J. M. Liu, Applied Physics Letters 86, 202504 (2005).
http://dx.doi.org/10.1063/1.1935040
39.
C. L. Zhang, W. Q. Chen, J. Y. Li, and J. S. Yang, Smart Materials & Structures 18, 7566 (2009).
40.
Y. Wang, D. Hasanyan, M. Li, J. Gao, J. Li, D. Viehland, and H. Luo, Journal of Applied Physics 111, 124513 (2012).
http://dx.doi.org/10.1063/1.4729832
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4954697
Loading
/content/aip/journal/adva/6/6/10.1063/1.4954697
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4954697
2016-06-17
2016-09-29

Abstract

In previous works, most of them employ a linear constitutive model to describe magnetocapacitance (MC) effect in magnetoelectric (ME) composites, which lead to deficiency in their theoretical results. In view of this, based on a nonlinear magnetostrictive constitutive relation and a linear piezoelectric constitutive relation, we establish a nonlinear model for MC effect in PZT-ring/Terfenol-D-strip ME composites. The numerical results in this paper coincide better with experimental data than that of a linear model, thus, it’s essential to utilize a nonlinear constitutive model for predicting MC effect in ME composites. Then the influences of external magnetic fields, pre-stresses, frequencies, and geometric sizes on the MC effect are discussed, respectively. The results show that the external magnetic field is responsible for the resonance frequency shift. And the resonance frequency is sensitive to the ratio of outer and inner radius of the PZT ring. Moreover, some other piezoelectric materials are employed in this model and the corresponding MC effects are calculated, and we find that different type of piezoelectric materials affect the MC effect obviously. The proposed model is more accurate for multifunction devices designing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4954697.html;jsessionid=jC8IEGwEtEudlGdsBkthDbFQ.x-aip-live-06?itemId=/content/aip/journal/adva/6/6/10.1063/1.4954697&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4954697&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4954697'
Right1,Right2,Right3,