Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4954734
1.
A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999).
http://dx.doi.org/10.1126/science.283.5410.2034
2.
E. Dagotto, Science 309, 257262 (2005).
http://dx.doi.org/10.1126/science.1107559
3.
M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, Science 318, 1750 (2007).
http://dx.doi.org/10.1126/science.1150124
4.
T. S. Kasıraga, D. Sun, J. H. Park, J. M. Coy, Z. Fei, X. Xu, and D. H. Cobden, Nature Nanotech 7, 723 (2012).
http://dx.doi.org/10.1038/nnano.2012.176
5.
C. Miller, M. Triplett, J. Lammatao, J. Suh, D. Fu, J. Wu, and D. Yu, Phys. Rev. B 85, 085111 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.085111
6.
T. Favaloro, J. Suh, B. Vermeersch, K. Liu, Y Gu, L.-Q. Chen, K. X. Wang, J. Wu, and A. Shakouri, Nano Lett 14, 2394 (2014).
http://dx.doi.org/10.1021/nl500042x
7.
F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
http://dx.doi.org/10.1103/PhysRevLett.3.34
8.
J. B. Goodenough, J. Solid State Chem 3, 490 (1971).
http://dx.doi.org/10.1016/0022-4596(71)90091-0
9.
J. Kim, C. Ko, A. Frenzel, S. Ramanathan, and J. E. Hoffman, Appl. Phys. Lett. 96, 213106 (2010).
http://dx.doi.org/10.1063/1.3435466
10.
A. Sharoni, J. G. Ramírez, and I. K. Schullar, Phys. Rev. Lett. 101, 026404 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.026404
11.
H. Takami, T. Kanki, and H. Tanaka, Appl. Phys. Lett. 104, 023104 (2014).
http://dx.doi.org/10.1063/1.4861720
12.
H. Ueda, T. Kanki, and H. Tanaka, Appl. Phys. Lett. 102, 153106 (2013).
http://dx.doi.org/10.1063/1.4802207
13.
P. Baum, D. –S. Yang, and H. Zewail, Science 318, 788 (2007).
http://dx.doi.org/10.1126/science.1147724
14.
A. Shekahawat, S. Papanikolaou, S. Zapperi, and P. Sethna, Phys. Rev. Lett. 107, 276401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.276401
15.
K. Kawatani, H. Takami, T. Kanki, and H. Tanaka, Appl. Phys. Lett. 100, 173112 (2012).
http://dx.doi.org/10.1063/1.4709429
16.
H.-T. Kim, B.-G. Chae, D.-H Youn, S.-L. Meang, G. Kim, K.-Y. Kang, and Y.-S. Lim, New J. Phys. 6, 52 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/052
17.
T. Driscoll, H.-T. Kim, B.-G. Chae, M. D. Ventra, and D. N. Basov, Appl. Phys. Lett. 95, 043503 (2009).
http://dx.doi.org/10.1063/1.3187531
18.
T. Kanki, K. Kawatani, H. Takami, and H. Tanaka, Appl. Phys. Lett. 101, 243118 (2012).
http://dx.doi.org/10.1063/1.4772211
19.
A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, Phys. Rev. Lett. 110, 056601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.056601
20.
S. Yamasaki, T. Kanki, N. Manca, L. Pellegrino, D. Marré, and H. Tanaka, Appl. Phys. Exp. 7, 023201 (2014).
http://dx.doi.org/10.7567/APEX.7.023201
21.
J. Cao, W. Ran, H. Zheng, and J. Wu, Nano Lett. 9, 4001 (2009).
http://dx.doi.org/10.1021/nl902167b
22.
C. N. Berglund and H. J. Guggenheim, Phys. Rev. 185, 1022 (1969).
http://dx.doi.org/10.1103/PhysRev.185.1022
23.
Q. Gu, A. Falk, J. Wu, L. Ouyang, and H. Park, Nano Lett. 7, 363 (2007).
http://dx.doi.org/10.1021/nl0624768
24.
H. Takami, K. Kawatani, H. Ueda, K. Fujiwara, T. Kanki, and H. Tanaka, Appl.Phys. Lett. 101, 263111 (2012).
http://dx.doi.org/10.1063/1.4773371
25.
K. Okimura and J. Sakai, Jpn. J. Appl. Phys. 48, 045504 (2009).
http://dx.doi.org/10.1143/JJAP.48.045504
26.
D.-W. Oh, C. Ko, S. Ramanathan, and D. G. Cahill, Appl. Phys. Lett. 96, 151906 (2010).
http://dx.doi.org/10.1063/1.3394016
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4954734
Loading
/content/aip/journal/adva/6/6/10.1063/1.4954734
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4954734
2016-06-20
2016-09-26

Abstract

We report anomalous resistance leaps and drops in VO nanowires with operating current density and direction, showing reversible and nonvolatile switching. This event is associated with the metal–insulator phase transition (MIT) of local nanodomains with coexistence states of metallic and insulating phases induced by thermoelectric cooling and heating effects. Because the interface of metal and insulator domains has much different Peltier coefficient, it is possible that a significant Peltier effect would be a source of the local MIT. This operation can be realized by one-dimensional domain configuration in VO nanowires because one straight current path through the electronic domain-interface enables theoretical control of thermoelectric effects. This result will open a new method of reversible control of electronic states in correlated electron materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4954734.html;jsessionid=Eb0tBYqvYDqduWyEbbm8tE0z.x-aip-live-06?itemId=/content/aip/journal/adva/6/6/10.1063/1.4954734&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4954734&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4954734'
Right1,Right2,Right3,