Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4954808
1.
E. M. Chudnovsky, “Theory of spin Hall effect: Extension of the Drude model,” Phys. Rev. Lett. 99, 206601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.206601
2.
S. Takahashi and S. Maekawa, “Spin current in metals and superconductors,” J. Phys. Soc. Jpn. 77, 031009 (2008).
http://dx.doi.org/10.1143/JPSJ.77.031009
3.
N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, “Anoumalous Hall effect,” Rev. Mod. Phys. 82, 1539 (2008).
http://dx.doi.org/10.1103/RevModPhys.82.1539
4.
S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphen: Frequency multiplication and the self-consistent-field effects,” J. Phys.: Condens. Matter 20, 1 (2008).
http://dx.doi.org/10.1088/0953-8984/20/38/384204
5.
J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), p. 549.
6.
R. Karplus and J. M. Luttinger, “Hall effect in ferromagnetics,” Phys. Rev. 95, 1154 (1954).
http://dx.doi.org/10.1103/PhysRev.95.1154
7.
J. Smit, “The spontaneous Hall effect in ferromagnetics I,” Physica 21, 877 (1955).
http://dx.doi.org/10.1016/S0031-8914(55)92596-9
8.
J. Smit, “The spontaneous Hall effect in ferromagnetics II,” Physica 24, 39 (1958).
http://dx.doi.org/10.1016/S0031-8914(58)93541-9
9.
J. Kondo, “Anomalous Hall effect and magnetoresistance of ferromagnetic metals,” Prog. Theor. Phys. 27, 772 (1962).
http://dx.doi.org/10.1143/PTP.27.772
10.
G. Y. Guo, S. Maekawa, and N. Nagaosa, “Enhanced spin Hall effect by resonant skew scattering in the orbital-dependent Kondo effect,” Phys. Rev. Lett. 102, 036401 (1970).
http://dx.doi.org/10.1103/PhysRevLett.102.036401
11.
L. Berger, “Side-jump mechanism for the Hall effect of ferromagnets,” Phys. Rev. B 2, 4559 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.4559
12.
L. Berger, “Hall effect of a compensated magnetic metal proportional to MB2 in the high-field limit,” Phys. Rev. 177, 790 (1969).
http://dx.doi.org/10.1103/PhysRev.177.790
13.
M. Sakai, D. Kodama, T. Sakuraba, Z. Honda, S. Hasegawa, A. Kitajima, A. Oshima, K. Higuchi, and O. Nakamura, “Negative magnetoresistance generated by combination of spin-orbit interaction and applied magnetic field,” Jpn. J. Appl. Phys. 51, 023001 (2012).
http://dx.doi.org/10.7567/JJAP.51.023001
14.
M. Sakai, D. Kodama, Y. Okano, T. Sakuraba, Z. Honda, A. Kitajima, A. Oshima, K. Higuchi, S. Hasegawa, and O. Nakamura, “Magnetoresistance generated by combination of spin-orbit interaction and applied magnetic field in bipolar conductors,” Jpn. J. Appl. Phys. 52, 093001 (2013).
http://dx.doi.org/10.7567/JJAP.52.093001
15.
J. M. Lavine, “Alternate current apparatus for measuring the ordinary Hall coefficient of ferromagnetic metals and semiconductors,” Rev. Sci. Instrum. 29, 970 (1958).
http://dx.doi.org/10.1063/1.1716070
16.
S. Sikorski and A. Kobus, “Influence of the skin-effect on Hall voltage in semiconductors,” Solid-State Electronics 10, 1063 (1967).
http://dx.doi.org/10.1016/0038-1101(67)90124-4
17.
A. H. MacDonald, T. M. Rice, and W. F. Brinkman, “Hall voltage and current distributions in an ideal two-dimensional system,” Phys. Rev. B 28, 3648 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.3648
18.
H. Akera, “Crossover of the Hall-voltage distribution in ac quantum Hall effect,” Physica E 43, 1240 (2011).
http://dx.doi.org/10.1016/j.physe.2011.02.008
19.
F. L. A. Machado and S. M. Rezende, “A theoretical model for the giant magnetoimpedance in ribbons of amorphous soft-ferromagnetic alloys,” J. Appl. Phys. 79, 6558 (1996).
http://dx.doi.org/10.1063/1.361945
20.
L. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett. 65, 1189 (1994).
http://dx.doi.org/10.1063/1.112104
21.
Y. Aharonov, P. Pearle, and L. Vaidman, “Comment on “Proposed Aharonov-Casher effect: Another example of an Aharonov-Bohm effect arising from a classical lag”,” Phys. Rev. A 37, 4052 (1988).
http://dx.doi.org/10.1103/PhysRevA.37.4052
22.
W. Schockley and R. P. James, ““Try simplest cases” discovery of “hidden momentum” forces on “magnetic currents”,” Phys. Rev. Lett. 18, 876 (1967).
http://dx.doi.org/10.1103/PhysRevLett.18.876
23.
A. L. Kholmetskii, O. V. Missevitch, and T. Yarman, “Reply to comments on ‘Electromagnetic force on a moving dipole','' Eur. J. Phys. 33, L7 (2012).
http://dx.doi.org/10.1088/0143-0807/33/1/L03
24.
V. Hnidzo, “Comments on ‘Electromagnetic force on a moving dipole','' Eur. J. Phys. 33, L3 (2012).
http://dx.doi.org/10.1088/0143-0807/33/1/L02
25.
K. Ohta, “Maxwell Riron no Kiso,” Fundamentals of Maxwell’s Theory: Electrodynamics via Relativity (University of Tokyo Press, 2002), pp. 3358 [in Japanese].
26.
S. Sunagawa, Riron Dejikigaku, 3rd ed. (Kinokuniya Shoten, 1999), pp. 2425 [in Japanese].
27.
A. Fert and I. A. Campbell, Phys. Rev. Lett. 21, 1190 (1968).
http://dx.doi.org/10.1103/PhysRevLett.21.1190
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4954808
Loading
/content/aip/journal/adva/6/6/10.1063/1.4954808
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4954808
2016-06-21
2016-12-05

Abstract

The relativistic effect on electromagnetic forces yields two types of forces which depend on the velocity of the relevant particles: (i) the usual Lorentz force exerted on a moving charged particle and (ii) the apparent Lorentz force exerted on a moving magnetic moment. In sharp contrast with type (i), the type (ii) force originates due to the transverse field induced by the Hall effect (HE). This study incorporates both forces into a Drude-type equation with a fully spin-polarized condition to investigate the effects of self-consistency of the source and the resultant fields on the HE. We also examine the self-consistency of the carrier kinematics and electromagnetic dynamics by simultaneously considering the Drude type equation and Maxwell equations at low frequencies. Thus, our approach can predict both the dc and ac characteristics of the HE, demonstrating that the dc current condition solely yields the ordinary HE, while the ac current condition yields generation of both fundamental and second harmonic modes of the HE field. When the magnetostatic field is absent, the simultaneous presence of dc and ac longitudinal currents generates the ac HE that has both fundamental frequency and second harmonic.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4954808.html;jsessionid=GQmU94-RiQP_jutPWPegT_yA.x-aip-live-06?itemId=/content/aip/journal/adva/6/6/10.1063/1.4954808&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4954808&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4954808'
Right1,Right2,Right3,