Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4954882
1.
H. A. Bruson, U.S. patent 2, 115,250 A 1938 ;
E. A. Walker, J. Am. Coll. Toxicol. 4, 65 (1985);
F. Coulston, H. P. Drobeck, Z. E. Mielens, and P. J. Garvin, Jr., Toxicology and Applied Pharmacology 3(6), 584 (1961);
http://dx.doi.org/10.1016/0041-008X(61)90049-7
The Merck Index 13th Edition 2001, # 1074, Merck & Co, Inc., Whitehouse Station, New Jersey.
2.
A. Goodman Gilman, L. S. Goodman, T. W. Rall, and F. Murad, Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 7th ed. (MacMillan Publisher Company, N. Y, 1985), pp. 950971.
3.
H. Wennerstrom and B. Lindemann, Phys. Rev 52, 1 (1979);
C. A. Faunce and H. H. Paradies, J. Phys. Chem. B 116, 12992 (2012).
http://dx.doi.org/10.1021/jp306632q
4.
H. H. Paradies, U.S. patent 4,074,850 (1989).
5.
J. K. Rose, U.S. patent 5,279,833 (1994).
6.
E. Lee, C. Oh, I. S. Kwon, I. C. Kwon, and S. Kim, J. Control. Release 210, 105 (2015).
http://dx.doi.org/10.1016/j.jconrel.2015.05.262
7.
I. T. Beck, E. Pinter, R. D. McKenna, and H. Griff, Can. J. Biochem. Physiol. 38, 25 (1960).
http://dx.doi.org/10.1139/o60-004
8.
A. Karumbamkandathil, S. Gosh, U. Anand, P. Saha, and M. Mukherjee, Chem. Phys. Letters 593, 115 (2014).
http://dx.doi.org/10.1016/j.cplett.2014.01.005
9.
H. H. Paradies, U. Hinze, and M. Thies, Ber. Bunsenges. Phys. Chem 98, 938 (1994).
http://dx.doi.org/10.1002/bbpc.19940980708
10.
M. Thies, U. Hinze, and H. H. Paradies, Colloids and Surfaces A 101, 261 (1995).
http://dx.doi.org/10.1016/0927-7757(95)03225-3
11.
H. H. Paradies and M. Thies, Ber. Bunsenges. Phys. Chem. 98, 715 (1994).
http://dx.doi.org/10.1002/bbpc.19940980511
12.
K. M. Coates and P. Flood, Br. J. Pharmacol. 134(4), 871 (2001);
http://dx.doi.org/10.1038/sj.bjp.0704315
Z. Zaman, E. Speeleveld, L. Smeyers, and K. Desmet, Eur. J. Clin. Chem. Clin. Biochem. 35(8), 603 (1997);
E. Lang, K. Jilani, C. Zedenak, V. Pasham, D. Bobbola, S. M. Qadri, and F. Lang, Cell. Physiol. Biochem. 28(2), 347 (2011).
http://dx.doi.org/10.1159/000331751
13.
H. H. Paradies, U.S. patent 4,999,435 (1991) ;
H. H. Paradies, in 65th Colloid and Surface Science Symposium of the Am. Chem. Soc (1991), Abstract # 134.
14.
K. W. Yip, X. Mao, P. Y. BillieAu, D. W. Hedley, S. Chow, S. Dallili, J. D. Mocanu, C. Bastianutto, A. Schimmer, and F. Liu, Clin. Cancer Res. 12(18), 5557 (2006).
http://dx.doi.org/10.1158/1078-0432.CCR-06-0536
15.
A. Kanazawa, T. Ikeda, and T. Endo, J. Applied Bacteriology 76, 55 (1995).
http://dx.doi.org/10.1111/j.1365-2672.1995.tb01673.x
16.
Biochemistry of Antimicrobial Actions, edited by T. J. Franklin and G. A. Snow (Chapman and Hall, London, 1981), pp. 5878.
17.
R. Savic, L. Luo, A. Eisenberg, and D. Maysinger, Science 300, 615 (2003).
http://dx.doi.org/10.1126/science.1078192
18.
See supplementary material at http://dx.doi.org/10.1063/1.4954882 for S1: morphology, electric conductivity, surface tension, CMC, membrane osmometry; S2: Crystallographic Data for the Bzth-X Molecular Materials; S3: Small- Angle and Wide-Angle X-Ray Scattering (SAXS & WAXS); S4: References.[Supplementary Material]
19.
G. M. Sheldrick, SHELX S86. In Crystallographic Computing 3;
, edited by G. M. Sheldrick, C. Kruger, and R. Goddard (Oxford University Press, Oxford, U.K, 1985), pp. 175-189 To solve structure, SHELX S87; to refine structure, SHELXL 97.;
P. Müller, R. Herbst-Irmer, A. L. Spek, T. R. Schneider, and M. R. Sawaya, Crystal Structure Refinement; A Crystallographer’s Guide to SHELXL (Oxford University Press, Oxford U.K, 2006).
20.
C. J. Gilmore, J. Appl. Cryst 17, 42 (1984);
http://dx.doi.org/10.1107/S0021889884010992
J. A. Ibers and W. C. Hamilton, Acta Cryst 17, 781 (1964).
http://dx.doi.org/10.1107/S0365110X64002067
21.
P. T. Beurskens, Technical Report Crystallography Laboratory, Toernooiveld, 6525 Ed Nijmegen, Netherlands (1984/1).
22.
D. T. Cromer and J. T. Waber, International Tables for X-Ray Crystallography (The Kynoch Press, Birmingham, England, 1974), Vol. IV, Table 2.2A.;
D. T Cromer, International Tables for X-Ray Crystallography (The Kynoch Press, Birmingham, England, 1974), Vol. IV, Table 2.3.1.
23.
P. Coppens, L. Leiserowitz, and D. Rabinovich, Acta Cryst 18(6), 1035 (1965).
http://dx.doi.org/10.1107/S0365110X65002487
24.
H. Reichelt, C. A. Faunce, and H. H. Paradies, J. Chem. Phys. 143, 044307 (2015).
http://dx.doi.org/10.1063/1.4927140
25.
J.-P. Hansen, L. R. McDonald, and L. R., Theory of Simple Liquids (Academic Press, New York, 2007).
26.
T. Hahn, U. Shmueli, A. A. J. C. Wilson, E. Prince, and E., International Tables for Crystallography (D Reidel Publishing Company, Dordrecht, Netherlands, 2005).
27.
B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “Gromacs 4: Algorithm for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation,” J. Chem. Theory and Computation 4, 435-447 (2008).
http://dx.doi.org/10.1021/ct700301q
28.
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, “Gromacs 4: Fast, Flexible and Free,” J. Comput. Chem 20, 1701-1718 (2005).
http://dx.doi.org/10.1002/jcc.20291
29.
W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rivers, J. Am. Chem. Soc 118, 11225 (1996).
http://dx.doi.org/10.1021/ja9621760
30.
M. L. P. Price, D. Ostrowsky, and W. L. J. Jorgensen, Comput. Chem. 22, 1340 (2001).
http://dx.doi.org/10.1002/jcc.1092
31.
J. N. Canongia Lopes and A. A. Pádua, J. Phys. Chem. B 108, 16893 (2004);
http://dx.doi.org/10.1021/jp0476545
J. N. Canongia Lopes and A. A. Pádua, J. Phys. Chem. B. 110, 19586 (2006).
http://dx.doi.org/10.1021/jp063901o
32.
S. Nosé, J. Chem. Phys. 81, 511-520 (1984).
http://dx.doi.org/10.1063/1.447334
33.
S. Nosé, Mol. Phys. 52, 255-268 (1984).
http://dx.doi.org/10.1080/00268978400101201
34.
W. G. Hoover, Phys. Rev. A. 31, 1695-1716 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
35.
M. Parinello and A. Rahman, J. Appl. Phys 52, 7182-7190 (1981).
http://dx.doi.org/10.1063/1.328693
36.
T. Darden, D. York, and L. Pedersen, J. Chem. Phys 98, 10089-93 (1993).
http://dx.doi.org/10.1063/1.464397
37.
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577-93 (1995).
http://dx.doi.org/10.1063/1.470117
38.
L H. Jensen and A. J. Mabis, Acta Cryst. B 29, 770 (1960).
39.
M. O’Connell, Acta Cryst. B 24, 1399 (1968).
http://dx.doi.org/10.1107/S0567740868004401
40.
B. M. Graven and N. G. DeTitta, Chem. Phys. Lipids 24, 157 (1976);
B. M. Graven and N. G. DeTitta, J. Chem. Phys., Perkin Trans 2, 814 (1976).
41.
U. Shumueli, M. Steinblatt, and M. Polak, Acta Cryst. A 32, 192 (1976);
http://dx.doi.org/10.1107/S0567739476000478
A. Hybl and D. Dorset, Acta Cryst.B 27, 977 (1971).
http://dx.doi.org/10.1107/S0567740871003340
42.
F. L. Hirshfeld, Acta Cryst. A 32, 239 (1976).
http://dx.doi.org/10.1107/S0567739476000533
43.
H. H. Paradies and F. Habben, Acta Cryst.C 49, 744 (1993).
http://dx.doi.org/10.1107/S010827019201179X
44.
A. R. Campanelli and L. Scaramizza, Acta Cryst.C 42, 1380 (1986).
http://dx.doi.org/10.1107/S0108270186092193
45.
B. Alonso, D. Massiot, P. Florian, H. H. Paradies, P. Gaveau, and T. Mineva, J. Phys. Chem. B. 113(35), 11906 (2009).
http://dx.doi.org/10.1021/jp9027904
46.
T. Tara, K. Machida, N. Kimura, S. Hayashi, J. Umemura, and T. Takenaka, Acta Cryst. C 42, 608 (1986).
http://dx.doi.org/10.1107/S0108270186095203
47.
T. Tara, K. Machida, N. Kimura, S. Hayashi, J. Umemura, and T. Takenaka, Acta Cryst. C 43, 1204 (1987).
http://dx.doi.org/10.1107/S0108270187092515
48.
D. L. Ward, R. R. Rhinebarger, and A. I. Popov, Acta Cryst. C 42, 1771 (1986).
http://dx.doi.org/10.1107/S0108270186090613
49.
H. H. Paradies and S. F. Clancy, The Rigaku J. 17, 26 (2000).
50.
K. Okuyama, Y. Soboi, N. Iljima, K. Hirababayashi, T. Kunitake, and T. Kajiyama, Bull. Chem. Soc. Jpn 61, 1485 (1988).
http://dx.doi.org/10.1246/bcsj.61.1485
51.
O. Glatter, in Small Angel X-Ray Scattering, edited by O. Glatter and O. Kratky (Academic Press, New York, 1982), Chap. 4, pp. 167-196.
52.
G. Porod, Kolloid-Z. 124, 83 (1951).
http://dx.doi.org/10.1007/BF01512792
53.
F. J. Rogers and D. A. Young, Phys. Rev. A 30, 999 (1984).
http://dx.doi.org/10.1103/PhysRevA.30.999
54.
J.-P. Hansen and J. B. Hayter, Mol. Phys 46, 651 (1982).
http://dx.doi.org/10.1080/00268978200101471
55.
J. J. Hettige, H. K. Kashyap, and C. J. Margulis, J. Chem. Phys 140, 111102 (2014);
http://dx.doi.org/10.1063/1.4867900
A. Gupta, S. Sharma, and H. K. Kashyap, J. Chem. Phys. 142, 134503 (2015).
http://dx.doi.org/10.1063/1.4916308
56.
H. K. Kashyap and C. J. Margulis, ECS Transactions 50(11), 301 (2011);
http://dx.doi.org/10.1149/05011.0301ecst
H. K. Kashyap, C. S. Santos, H. V. R. Annapureddy, N. S. Murthy, C. J. Margulis, and E. W. Castner, Jr., Faraday Discuss 154, 133 (2012);
http://dx.doi.org/10.1039/C1FD00059D
H. K. Kashyap, J. J. Hettige, H. V. R. Annapureddy, and C. J. Margulis, Chem. Commun 48, 5103 (2012).
http://dx.doi.org/10.1039/c2cc30609c
57.
C. S. Santos, N. S. Murthy, G. A. Baker, G. A., and E. W. Castner, Jr., J. Chem. Phys. 134, 121101 (2011);
http://dx.doi.org/10.1063/1.3569131
E. W. Castner, C. J. Margulis, M. Maroncelli, and J. f. Wishart, Annu. Rev. Phys. Chem 62, 85 (2011).
http://dx.doi.org/10.1146/annurev-physchem-032210-103421
58.
E. C. Lorch, J. Phys.C: Solid State Phys. 2, 229 (1969).
http://dx.doi.org/10.1088/0022-3719/2/2/305
59.
J. Du, C. J. Benmore, R. Corrales, R. T. Hart, J. K. R. Weber, and J. K. R., J. Phys. Condens. Matter 21, 205102 (2009).
http://dx.doi.org/10.1088/0953-8984/21/20/205102
60.
J. J. Hettige, H. K. Kashyap, H. V. R. Annapureddy, and C. J. Margulis, J. Phys. Chem. Lett. 4, 105 (2013).
http://dx.doi.org/10.1021/jz301866f
61.
G. Porod, in Small Angel X-Ray Scattering, edited by O. Glatter and O. Kratky (Academic Press, New York, 1982), pp. 1751.
62.
Y. Liu, J. Strauss, and T. A. Camesano, Biomaterials 29, 4374 (2008).
http://dx.doi.org/10.1016/j.biomaterials.2008.07.044
63.
B. Fang, Y. Jiang, K. Nüsslein, V. M. Rotello, and M. M. Santore, Colloids and Surfaces B: Biointerfaces 125, 255 (2015).
http://dx.doi.org/10.1016/j.colsurfb.2014.10.043
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4954882
Loading
/content/aip/journal/adva/6/6/10.1063/1.4954882
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4954882
2016-06-22
2016-12-04

Abstract

The crystal structures of the hydrated cationic surfactant benzethonium (Bzth) chloride, bromide, hydroxide, and citrate have been determined by X-ray diffraction analysis and compared with their structures in solution well above their critical micelle concentration. The differences in the nature of the various anions of the four Bzth-X materials lead to unique anion environments and 3-D molecular arrangements. The water molecule in the monoclinic Bzth-Cl or Bzth-Br forms is hydrogen bonded to the halides and particularly to the hydrogens of the methoxy groups of the Bzth moiety notwithstanding the weak Brønsted acidity of the methoxy hydrogens. The citrate strongly interacts with the hydrogens of the methoxy group forming an embedded anionic spherical cluster of a radius of 2.6 Å. The Bzth-OH crystallizes in a hexagonal lattice with two water molecules and reveals free water molecules forming hydrogen bonded channels through the Bzth-OH crystal along the -axis. The distances between the cationic nitrogen and the halides are 4.04 Å and 4.20 Å, significantly longer than expected for typical van der Waals distances of 3.30 Å. The structures show weakly interacting, alternating apolar and polar layers, which run parallel to the crystallographic - planes or - planes. The Bzth-X salts were also examined in aqueous solution containing 20% (v/v) ethanol and 1.0 % (v/v) glycerol well above their critical micelle concentration by small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The [1,1,1] planes for the Bzth Cl or Br, the [0,0,2] and [1,1,0] planes for the Bzth-citrate, the [2,-1,0] planes and the [0,0,1] planes for the Bzth-OH found in the crystalline phase were also present in the solution phase, accordingly, the preservation of these phases are a strong indication of periodicity in the solution phase.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4954882.html;jsessionid=70d-nI6OgSmLAB_Aa1B0lWI7.x-aip-live-06?itemId=/content/aip/journal/adva/6/6/10.1063/1.4954882&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4954882&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4954882'
Right1,Right2,Right3,