Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4954886
1.
K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Publishers, Boston, 1996).
2.
K. Uchino, S. Nomura, L. E. Cross, R. E. Newnham, and S. J. Jang, J. Mater. Sci. 16, 569 (1981).
http://dx.doi.org/10.1007/BF02402772
3.
S.-E. Park and W. Hackenberger, Curr. Opin. Solid State Mater. Sci. 6, 11 (2002).
http://dx.doi.org/10.1016/S1359-0286(02)00023-2
4.
R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, J. Phys. Chem. B 101, 10141 (1997).
http://dx.doi.org/10.1021/jp971522c
5.
R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford, New York, 2005).
6.
W. Liu and X. Ren, Phys. Rev. Lett. 103, 257602 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.257602
7.
F. Li, L. Jin, and R. Guo, Appl. Phys. Lett. 105, 232903 (2014).
http://dx.doi.org/10.1063/1.4904019
8.
R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.1651
9.
R. Resta, Rev. Mod. Phys. 66, 899 (1994).
http://dx.doi.org/10.1103/RevModPhys.66.899
10.
N. Sai, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B 66, 104108 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.104108
11.
M. Stengel, N. A. Spaldin, and D. Vanderbilt, Nat. Phys. 5, 304 (2009).
http://dx.doi.org/10.1038/nphys1185
12.
I. Souza, J. Íñiguez, and D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.117602
13.
P. Umari and A. Pasquarello, Phys. Rev. Lett. 89, 157602 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.157602
14.
H. Fu and L. Bellaiche, Phys. Rev. Lett. 91, 057601 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.057601
15.
M. Veithen, X. Gonze, and P. Ghosez, Phys. Rev. Lett. 93, 187401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.187401
16.
A. Antons, J. B. Neaton, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B 71, 024102 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.024102
17.
M. Stengel and N. A. Spaldin, Phys. Rev. B 75, 205121 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.205121
18.
O. Dieguez and D. Vanderbilt, Phys. Rev. Lett. 96, 056401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.056401
19.
M. Stengel, D. Vanderbilt, and N. A. Spaldin, Phys. Rev. B 80, 224110 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.224110
20.
X. Wu, M. Stengel, K. M. Rabe, and D. Vanderbilt, Phys. Rev. Lett. 101, 087601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.087601
21.
X. Wu, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B 83, 020104 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.020104
22.
M. Stengel, C. J. Fennie, and P. Ghosez, Phys. Rev. B 86, 094112 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.094112
23.
M. Stengel and D. Vanderbilt, Phys. Rev. B 80, 241103 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.241103
24.
M. Stengel, Phys. Rev. Lett. 106, 136803 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.136803
25.
C. Cancellieri, D. Fontaine, S. Gariglio, N. Reyren, A. D. Caviglia, A. Fête, S. J. Leake, S. A. Pauli, P. R. Willmott, M. Stengel, P. Ghosez, and J. M. Triscone, Phys. Rev. Lett. 107, 056102 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.056102
26.
J. Hong and D. Vanderbilt, Phys. Rev. B 84, 115107 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.115107
27.
X. Gonze, J. M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G. M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J. Y. Raty, and D. C. Allan, Comp. Mat. Sci. 25, 478 (2002).
http://dx.doi.org/10.1016/S0927-0256(02)00325-7
28.
J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
29.
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
30.
K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, Comput. Mater. Sci. 81, 446 (2014).
http://dx.doi.org/10.1016/j.commatsci.2013.08.053
31.
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
32.
X. Wu, D. Vanderbilt, and D. R. Hamann, Phys. Rev. B 72, 035105 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.035105
33.
J. J. Wang, F. Y. Meng, X. Q. Ma, M. X. Xu, and L. Q. Chen, J. Appl. Phys. 108, 034107 (2010).
http://dx.doi.org/10.1063/1.3462441
34.
F. Li, L. Jin, Z. Xu, and S. Zhang, Appl. Phys. Rev. 1, 011103 (2014).
http://dx.doi.org/10.1063/1.4861260
35.
We note that if constant volume is assumed in the process of measuring electrostriction coefficients, it can be shown that, for the tetragonal symmetry, . We did not use this constraint in structural relaxations since such an assumption is not suitable for all situations. For instance, for thin films grown on a substrate, the volume can indeed change with d applied in the out-of-plane direction.
36.
D. Berlincourt and H. Jaffe, Phys. Rev. 111, 143 (1958).
http://dx.doi.org/10.1103/PhysRev.111.143
37.
P. S. Dobal, A. Dixit, R. S. Katiyar, Z. Yu, R. Guo, and A. S. Bhalla, J. Appl. Phys. 89, 8085 (2001).
http://dx.doi.org/10.1063/1.1369399
38.
A. M. Azad, S. Subramaniam, and T. W. Dung, J. Alloys Compd. 334, 118 (2002).
http://dx.doi.org/10.1016/S0925-8388(01)01785-6
39.
A. R. Akbarzadeh, I. Kornev, C. Malibert, L. Bellaiche, and J. M. Kiat, Phys. Rev. B 72, 205104 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205104
40.
K. Uchino, L. E. Cross, R. E. Newnham, and S. Nomura, Phase Transitions 1, 333 (1980).
http://dx.doi.org/10.1080/01411598008218442
41.
A. I. Lebedev and I. A. Sluchinskaya, J. Adv. Dielect. 5, 1550019 (2015).
http://dx.doi.org/10.1142/S2010135X15500198
42.
R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 49, 5828 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.5828
43.
W. Zhong, D. Vanderbilt, and K. M. Rabe, Phys. Rev. B 52, 6301 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.6301
44.
N. Zhang, H. Yokota, A. M. Glazer, and P. A. Thomas, Acta Cryst. B 67, 386 (2011).
http://dx.doi.org/10.1107/S0108768111028631
45.
T. Nishimatsu, M. Iwamoto, Y. Kawazoe, and U. V. Waghmare, Phys. Rev. B 82, 134106 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.134106
46.
D. Berlincourt and H. Jaffe, Phys. Rev. 111, 143 (1958).
http://dx.doi.org/10.1103/PhysRev.111.143
47.
Y. Liu, G. Xu, C. Song, Z. Ren, G. Han, and Y. Zheng, Mater. Sci. Eng., A 472, 269 (2008).
http://dx.doi.org/10.1016/j.msea.2007.03.028
48.
R. Terki, H. Feraoun, G. Bertrand, and H. Aourag, Phys. Stat. Sol. (b) 242, 1054 (2005).
http://dx.doi.org/10.1002/pssb.200402142
49.
Z. Li, M. Grimsditch, C. M. Foster, and S. K. Chan, J. Phys. Chem. Solids 57, 1433 (1996).
http://dx.doi.org/10.1016/0022-3697(96)00009-1
50.
S. Yamanaka, H. Fujikane, T. Ha maguchi, H. Muta, T. Oyama, T. Matsuda, S. Kobayashi, and K. Kurosaki, J. Alloys Compd. 359, 109 (2003).
http://dx.doi.org/10.1016/S0925-8388(03)00214-7
51.
A. G. Kalinichev, J. D. Bass, C. S. Zha, P. D. Han, and D. A. Payne, J. Appl. Phys. 74, 6603 (1993).
http://dx.doi.org/10.1063/1.355099
52.
H. H. Wieder, Phys. Rev. 99, 1161 (1955).
http://dx.doi.org/10.1103/PhysRev.99.1161
53.
M. Fechner, S. Ostanin, and I. Mertig, Phys. Rev. B 77, 094112 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.094112
54.
W. Kleemann, F. J. Schäfer, and M. D. Fontana, Phys. Rev. B 30, 1148 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.1148
55.
V. Gavrilyachenko, Sov. Phys. Solid State 12, 1203 (1970).
56.
C. Z. Wang, R. Yu, and H. Krakauer, Ferroelectrics 194, 97 (1997).
http://dx.doi.org/10.1080/00150199708016085
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4954886
Loading
/content/aip/journal/adva/6/6/10.1063/1.4954886
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4954886
2016-06-22
2016-09-25

Abstract

Electrostriction is an important material property that characterizes how strain changes with the development of polarization inside a material. We show that techniques developed in recent years can be exploited to compute and understand electrostriction of ferroelectric materials. Here, electrostriction coefficients of ferroelectric BaTiO, PbTiO, as well as dielectric BaZrO, are obtained and analyzed. Possible causes of the difference between experimental and numerical results are discussed. We also identified that relative displacements between certain ions at a given polarization could be a good indicator of a material’s electrostriction property.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4954886.html;jsessionid=n2RbUcAr-gm-DqNjmY2j_iKK.x-aip-live-02?itemId=/content/aip/journal/adva/6/6/10.1063/1.4954886&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4954886&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4954886'
Right1,Right2,Right3,