Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
K. Yamada, N. Hoshino, and T. Nakada, Sci. Technol. Adv. Mater. 7, 42 (2006).
H. Ishizaki, K. Yamada, R. Arai, Y. Kuromiya, Y. Masatsugu, N. Yamada, and T. Nakada, Mater. Res. Soc. Symp. Proc. 865, F5.12 (2005).
X. F Zhang, T. Kobayashi, Y. Kurokawa, and A. Yamada, Jpn. J. Appl. Phys. 51, 10NC05 (2012).
T. Nakada, K. Yamada, R. Arai, H. Ishizaki, and N. Yamada, Mater. Res. Soc. Symp. Proc. 865, F11.1 (2005).
X. F. Zhang, T. Kobayashi, Y. Kurokawa, S. Miyajima, and A. Yamada, Jpn. J. Appl. Phys. 52, 055801-1 (2013).
Y. L. Cui, U. N. Roy, A. Burger, and J. T. Goldstein, J. Appl. Phys. 103, 123514 (2008).
X. F. Zhang, T. Kobayashi, Y. Kurokawa, Y. Tashiro, M. Ohtsuka, T. Yamada, and A. Yamada, Jpn. J. Appl. Phys. 50, 126603 (2011).
K. Kishigui, K. Abe, G. Murakami, Y. G. shim, K. yoshino, and K. Wakita, Thin Solid Films 517, 1445 (2008).
A. Miller and G. S. Ash, Opt. Commun. 33, 297 (1980).
A. Bauknecht, S. Siebentritt, J. Albert, and M. C. Lux-Steiner, J. Appl. Phys. 89, 4391 (2001).
T. Schmidt, K. Lischka, and W. Zulehner, Phys. Rev. B 45, 8989 (1992).
J. Krustok, H. Collan, and K. Hjelt, J. Appl. Phys. 81, 1442 (1997).
T. Unold and L. Gütay, Photoluminescence Analysis of Thin-Film Solar Cells, in Advanced Characterization Techniques for Thin Film Solar Cells (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011), pp. 157-163.
R. C. C. Leite and A. E. Digiovanni, Phys. Rev. 153, 841 (1967).
P. W. Yu, J. Appl. Phys. 48, 5043 (1977).
W. Stadler, D. M. Hofmann, H. C. Alt, T. Muschik, and B. K. Meyer, Phys. Rev. B 51, 10619 (1995).
J. Lee, N. C. Giles, D. Rajavel, and C. J. Summers, J. Appl. Phys. 78, 5669 (1995).
I. Dirnstorfer, M. Wagner, D. M. Hofmann, M. D. Lampert, F. Karg, and B. K. Meyer, Phys. Stat. Sol. A 168, 163 (1998).<163::AID-PSSA163>3.0.CO;2-T
S. Zott and K. Leo, J. Appl. Phys. 82, 356 (1997).
S. A. Schumacher and J. R. Bothaa, J. Appl. Phys. 99, 063508 (2006).
B. I. shklovskij and A. L. Efros, Electronic Properties of Doped. Semiconductors (Springer-Verlag, Berlin, 1984), p. 245.
D. M. Eagles, J. Phys. Chem. Solids 16, 76 (1960).
S. Siebentritt, Thin Solid Films 403, 1 (2002).
R. Márquez and C. Rincón, Mater. Lett. 40, 66 (1999).
E. I. Rogacheva, in Ternary and Multinary Compounds 1998: Proceedings of the 11th International Conference on Ternary and Multinary Compounds, Salford, England, Ukraine, 8 Sempter-12 Sepmber 1998. edited byR. D. Tomlinson, A. E. Hill, and R. D. Pilkington (Institute of Physics, London, 1998), pp. 1-14.

Data & Media loading...


Article metrics loading...



A detailed analysis of the radiative recombination processes in Ag(InGa)Se thin films grown by a three-stage method was carried out by photoluminescence. The temperature and excitation dependence of the photoluminescence spectra was used to identify the recombination types and determine the ionization energy of the defects in the films. Significant differences were observed between the spectra of the Ag-rich and Ag-poor samples. The Ag-rich films were dominated by two emission peaks of donor acceptor pairs (DAPs). The DAP at lower energy level is attributed to recombination of donor level 13.8 meV (Ag ) with acceptor level 70.3 meV (Ag ), while the one at high energy level is assigned to recombination of donor level 18.5 meV (Ag ) with acceptor level 108.9 (Ag ). When Ag/III atomic ratio was near 2.00, a phonon related-structure began to appear, which is attributed to the phonon replica of the high energy level DAP. In the case of Ag-poor AIGS samples, the dominant broad asymmetric peaks of AIGS films with different Ag/III atomic ratios were related to potential fluctuation at low temperature, and the compensation level decreased with increasing Ag/III atomic ratio. The emission line was assigned to recombination of donor level 12.7 meV (Ag ) with acceptor level 175 meV (). When the excitation power and temperature were increased, new free-bound and DAP emission lines began to appear. The free-bound was assigned to the transition from the conduction band to an acceptor level of 80 meV (Ag ). The DAP was assigned to recombination of donor level 20 meV (V) with acceptor level 145 meV (Ag ).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd