Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4954923
1.
L.D. Landau and E.M. Lisfshitz, Quantum mechanics, 3rd ed. (Pergamon Press, Oxford, 1977).
2.
K. Banerjee and S.P. Bhatnagar, Phys. Rev. D 18, 4767 (1978).
http://dx.doi.org/10.1103/PhysRevD.18.4767
3.
R.N. Chaudhuri and M. Mondal, Phys. Rev. A 43, 3241 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.3241
4.
U.B. Kaulfuss and M. Altenbokum, Phys. Rev. D 33, 3658 (1986).
http://dx.doi.org/10.1103/PhysRevD.33.3658
5.
R.F. Bishop and M.F. Flynn, Phys. Rev. A 38, 2211 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.2211
6.
F.T. Hioe and E.W. Montroll, J. Math. Phys. 16, 1945 (1975).
http://dx.doi.org/10.1063/1.522747
7.
F.T. Hioe, D. Macmillen, and E.W. Montroll, Phys. Rep. 43, 305 (1978).
http://dx.doi.org/10.1016/0370-1573(78)90097-2
8.
A. Okopinska, Phys. Rev. D 35, 1835 (1987).
http://dx.doi.org/10.1103/PhysRevD.35.1835
9.
W. Janke and H. Kleinert, Phys. Rev. Lett. 75, 2787 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.2787
10.
R. Jauregui and J. Recamier, Phys. Rev. A 46, 2240 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.2240
11.
F.M. Fernandez and J.P. Ogilvie, Phys. Lett. 178A, 11 (1993).
http://dx.doi.org/10.1016/0375-9601(93)90719-G
12.
M.R.M. Witwit, J. Math. Chem. 22, 11 (1997).
http://dx.doi.org/10.1023/A:1019115712540
13.
M.H. Macfarlane, Ann. Phys. 271, 159 (1999).
http://dx.doi.org/10.1006/aphy.1998.5854
14.
P. J. Gaudreau, R. M. Slevinsky, and H. Safouhi, Annals of Physics 360, 520538 (2015).
http://dx.doi.org/10.1016/j.aop.2015.05.026
15.
H.A. Alhendi and E.I. Lashin, Can. J. Phys. 83, 541550 (2005).
http://dx.doi.org/10.1139/p04-085
16.
F.M. Fernández, Phys. Scr. 78, 015003 (2008).
http://dx.doi.org/10.1088/0031-8949/78/01/015003
17.
R. Barakat and R. Rosner, Phys. Lett. A 83, 149 (1981).
http://dx.doi.org/10.1016/0375-9601(81)90871-9
18.
R. N. Chaudhuri and B. Mukherjee, J. Phys. A 16, 3193 (1983).
http://dx.doi.org/10.1088/0305-4470/16/14/014
19.
A. Hautot, Phys. Rev. D 33, 437 (1986).
http://dx.doi.org/10.1103/PhysRevD.33.437
20.
A. Voros, J. Phys. A 27, 4653 (1994).
http://dx.doi.org/10.1088/0305-4470/27/13/038
21.
M. Trott, arxiv:quant-ph/0012147(2000).
22.
C. J. Tymczak, G. S. Japaridze, C. R. Handy, and X. -Q. Wang, Phys. Rev. Lett. 80, 3673 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.3673
23.
I. V. Chebotarev, Ann. Phys. (NY) 273, 114 (1999).
http://dx.doi.org/10.1006/aphy.1998.5902
24.
A. K. Roy, N. Gupta, and B. M. Deb, Phys. Rev. A 65, 012109 (2002).
http://dx.doi.org/10.1103/PhysRevA.65.012109
25.
T. Barakat, Physics Letters A 344, 411417 (2005).
http://dx.doi.org/10.1016/j.physleta.2005.06.081
26.
F. Maiz and S. AlFaify, Physica B 441, 1720 (2014).
http://dx.doi.org/10.1016/j.physb.2014.01.044
27.
F. Maiz, A. Hfaiedh, and N. Yacoubi, Appl. Phys. 83(2), (1998).
http://dx.doi.org/10.1063/1.366769
28.
F. Maiz, Indian J. Phys 78A(3), 309313 (2004).
29.
F. Maiz, S.A. Eissa, and S. AlFaify, Physica B 425, 1112.
http://dx.doi.org/10.1016/j.physb.2013.05.010
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4954923
Loading
/content/aip/journal/adva/6/6/10.1063/1.4954923
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4954923
2016-06-22
2016-09-28

Abstract

The numerical solutions of the time independent Schrödinger equation of different one-dimensional potentials forms are sometime achieved by the asymptotic iteration method. Its importance appears, for example, on its efficiency to describe vibrational system in quantum mechanics. In this paper, the Airy function approach and the Numerov method have been used and presented to study the oscillator anharmonic potential V(x) = Ax + Bx2, (A>0, B<0), with (α = 2) for quadratic, (α =3) for sextic and (α =4) for octic anharmonic oscillators. The Airy function approach is based on the replacement of the real potential V(x) by a piecewise-linear potential v(x), while, the Numerov method is based on the discretization of the wave function on the x-axis. The first energies levels have been calculated and the wave functions for the sextic system have been evaluated. These specific values are unlimited by the magnitude of A, B and α. It’s found that the obtained results are in good agreement with the previous results obtained by the asymptotic iteration method for α =3.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4954923.html;jsessionid=w9pHcbUc9npKCQp6CsUaSeAK.x-aip-live-02?itemId=/content/aip/journal/adva/6/6/10.1063/1.4954923&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4954923&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4954923'
Right1,Right2,Right3,