Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4954974
1.
S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. S. Lin, B. H. Tseng, J. H. Shy, S. M. Sze, C. Y. Chang, and C. H. Lien, IEEE Electron Device Lett. 28, 809 (2007).
http://dx.doi.org/10.1109/LED.2007.903885
2.
J. Lu, T. C. Chang, Y. T. Chang, J. J. Huang, P. C. Yang, S. C. Chen, H. C. Huang, D. S. Gan, N. J. Ho, Y. Shi, and A. K. Chu, Appl. Phys. Lett. 96, 262107 (2010).
http://dx.doi.org/10.1063/1.3457870
3.
T. C. Chang, F. Y. Jian, S. C. Chen, and Y. T. Tsai, Mater. Today. 14, 608 (2011).
http://dx.doi.org/10.1016/S1369-7021(11)70302-9
4.
R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
5.
D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, Nat. Nanotechnol. 5, 148 (2010).
http://dx.doi.org/10.1038/nnano.2009.456
6.
H.-S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. Chen, and M. J. Tsai, Proc. IEEE. 100, 1951 (2012).
http://dx.doi.org/10.1109/JPROC.2012.2190369
7.
J. J. Yang, D. B. Strukov, and D. R. Stewart, Nat. Nanotechnol. 8, 14 (2013).
8.
F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Mater. Sci. Eng., R. 83, 1 (2014).
http://dx.doi.org/10.1016/j.mser.2014.06.002
9.
Y. J. Huang, S. C. Chao, D. H. Lien, C. Y. Wen, J. H. He, and S. C. Lee, Sci. Rep. 6, 23945 (2016).
http://dx.doi.org/10.1038/srep23945
10.
J. F. Scott, Science 315, 954 (2007).
http://dx.doi.org/10.1126/science.1129564
11.
R. Guo, L. You, Y. Zhou, Z. S. Lim, X. Zou, L. Chen, R. Ramesh, and J. Wang, Nat. Commun. 4, 1990 (2013).
12.
H. Liu, D. Bedau, D. Backes, J. A. Katine, J. Langer, and A. D. Kent, Appl. Phys. Lett. 97, 242510 (2010).
http://dx.doi.org/10.1063/1.3527962
13.
J. M. Hu, Z. Li, L. Q. Chen, and C. W. Nan, Nat. Commun. 2, 553 (2011).
http://dx.doi.org/10.1038/ncomms1564
14.
D. Kuzum, R. Jeyasingh, B. Lee, and H.-S. P. Wong, Nano Lett. 12, 2179 (2011).
http://dx.doi.org/10.1021/nl201040y
15.
A. Sebastian, M. L. Gallo, and D. Krebs, Nat. Commun. 5, 4314 (2014).
http://dx.doi.org/10.1038/ncomms5314
16.
Q. Liu, S. Long, H. Lv, W. Wang, J. Niu, Z. Huo, J. Chen, and M. Liu, ACS Nano 4, 6162 (2010).
http://dx.doi.org/10.1021/nn1017582
17.
Y. T. Tsai, T. C. Chang, C. C. Lin, S. C. Chen, C. W. Chen, S. M. Sze, F. S. Yeh, and T. Y. Tseng, Electrochem. Solid-State Lett. 14, H135 (2011).
http://dx.doi.org/10.1149/1.3531843
18.
Y. C. Huang, W. L. Tsai, C. H. Chou, C. Y. Wan, C. Hsiao, and H. C. Cheng, IEEE Electron Device Lett. 34, 1244 (2013).
http://dx.doi.org/10.1109/LED.2013.2275851
19.
H. D. Kim, M. J. Yun, S. M. Hong, and T. G. Kim, Nanotechnology 25, 125201 (2014).
http://dx.doi.org/10.1088/0957-4484/25/12/125201
20.
J. Yoon, H. Choi, D. Lee, J. B. Park, J. Lee, D. J. Seong, Y. Ju, M. Chang, S. Jung, and H. Hwang, IEEE Electron Device Lett. 30, 457 (2009).
http://dx.doi.org/10.1109/LED.2009.2015687
21.
K. C. Chang, T. M. Tsai, T. C. Chang, Y. E. Syu, S. L. Chuang, C. H. Li, D. S. Gan, and S. M. Sze, J. Electrochem. Soc. 15, H65 (2012).
22.
W. Banerjee, S. Z. Rahaman, A. Prakash, and S. Maikap, Jpn. J. Appl. Phys. 50, 10PH01 (2011).
http://dx.doi.org/10.7567/JJAP.50.10PH01
23.
Y. Song, Y. Liu, Y. Wang, M. Wang, X. Tian, L. Yang, and Y. Lin, IEEE Electron Device Lett. 32, 1439 (2011).
http://dx.doi.org/10.1109/LED.2011.2162055
24.
G. K. Dalapati, C. K. Chia, C. C. Tan, H. R. Tan, S. Y. Chiam, J. R. Dong, A. Das, S. Chattopadhyay, C. Mahata, C. K. Maiti, and D. Z. Chi, ACS Appl. Mater. Interfaces 5, 949 (2013).
http://dx.doi.org/10.1021/am302537b
25.
T. H. Hou, K. L. Lin, J. Shieh, J. H. Lin, C. T. Chou, and Y. J. Lee, Appl. Phys. Lett. 98, 103511 (2011).
http://dx.doi.org/10.1063/1.3565239
26.
Y. C. Chang and Y. H. Wang, ACS Appl. Mater. Interfaces 6, 5413 (2014).
http://dx.doi.org/10.1021/am500815n
27.
Y. Sun, X. Yan, X. Zheng, Y. Liu, Y. Zhao, Y. Shen, Q. Liao, and Y. Zhang, ACS Appl. Mater. Interfaces 7, 7382 (2015).
http://dx.doi.org/10.1021/acsami.5b01080
28.
S. Gao, C. Chen, Z. Zhai, H. Y. Liu, Y. S. Lin, S. Z. Li, S. H. Lu, G. Y. Wang, C. Song, F. Zeng, and F. Pan, Appl. Phys. Lett. 105, 063504 (2014).
http://dx.doi.org/10.1063/1.4893277
29.
Y. L. Chung, W. H. Cheng, J. S. Jeng, W. C. Chen, S. A. Jhan, and J. S. Chen, J. Appl. Phys. 116, 164502 (2014).
http://dx.doi.org/10.1063/1.4899319
30.
H. Tian, H. Y. Chen, T. L. Ren, C. Li, Q. T. Xue, M. A. Mohammad, C. Wu, Y. Yang, and H.-S. P. Wong, Nano Lett. 14, 3214 (2014).
http://dx.doi.org/10.1021/nl5005916
31.
D. Ielmini, F. Nardi, and C. Cagli, Nanotechnology 22, 254022 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254022
32.
J. J. Yang, F. Miao, M. D. Pickett, D. A. A. Ohlberg, D. R. Stewart, C. N. Lau, and R. S. Williams, Nanotechnology 20, 215201 (2009).
http://dx.doi.org/10.1088/0957-4484/20/21/215201
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4954974
Loading
/content/aip/journal/adva/6/6/10.1063/1.4954974
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4954974
2016-06-23
2016-12-08

Abstract

Owing to their small physical size and low power consumption, resistive random access memory (RRAM) devices are potential for future memory and logic applications in microelectronics. In this study, a new resistive switching material structure, TiO/silver nanoparticles/TiO /AlTiO, fabricated between the fluorine-doped tin oxide bottom electrode and the indium tin oxide top electrode is demonstrated. The device exhibits excellent memory performances, such as low operation voltage (<±1 V), low operation power, small variation in resistance, reliable data retention, and a large memory window. The current-voltage measurement shows that the conducting mechanism in the device at the high resistance state is via electron hopping between oxygen vacancies in the resistive switching material. When the device is switched to the low resistance state, conducting filaments are formed in the resistive switching material as a result of accumulation of oxygen vacancies. The bottom AlTiO layer in the device structure limits the formation of conducting filaments; therefore, the current and power consumption of device operation are significantly reduced.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4954974.html;jsessionid=cAyj4KxfvEMUlWh2Zp9rmwxn.x-aip-live-02?itemId=/content/aip/journal/adva/6/6/10.1063/1.4954974&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4954974&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4954974'
Right1,Right2,Right3,