Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. S. Lin, B. H. Tseng, J. H. Shy, S. M. Sze, C. Y. Chang, and C. H. Lien, IEEE Electron Device Lett. 28, 809 (2007).
J. Lu, T. C. Chang, Y. T. Chang, J. J. Huang, P. C. Yang, S. C. Chen, H. C. Huang, D. S. Gan, N. J. Ho, Y. Shi, and A. K. Chu, Appl. Phys. Lett. 96, 262107 (2010).
T. C. Chang, F. Y. Jian, S. C. Chen, and Y. T. Tsai, Mater. Today. 14, 608 (2011).
R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, Nat. Nanotechnol. 5, 148 (2010).
H.-S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. Chen, and M. J. Tsai, Proc. IEEE. 100, 1951 (2012).
J. J. Yang, D. B. Strukov, and D. R. Stewart, Nat. Nanotechnol. 8, 14 (2013).
F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Mater. Sci. Eng., R. 83, 1 (2014).
Y. J. Huang, S. C. Chao, D. H. Lien, C. Y. Wen, J. H. He, and S. C. Lee, Sci. Rep. 6, 23945 (2016).
J. F. Scott, Science 315, 954 (2007).
R. Guo, L. You, Y. Zhou, Z. S. Lim, X. Zou, L. Chen, R. Ramesh, and J. Wang, Nat. Commun. 4, 1990 (2013).
H. Liu, D. Bedau, D. Backes, J. A. Katine, J. Langer, and A. D. Kent, Appl. Phys. Lett. 97, 242510 (2010).
J. M. Hu, Z. Li, L. Q. Chen, and C. W. Nan, Nat. Commun. 2, 553 (2011).
D. Kuzum, R. Jeyasingh, B. Lee, and H.-S. P. Wong, Nano Lett. 12, 2179 (2011).
A. Sebastian, M. L. Gallo, and D. Krebs, Nat. Commun. 5, 4314 (2014).
Q. Liu, S. Long, H. Lv, W. Wang, J. Niu, Z. Huo, J. Chen, and M. Liu, ACS Nano 4, 6162 (2010).
Y. T. Tsai, T. C. Chang, C. C. Lin, S. C. Chen, C. W. Chen, S. M. Sze, F. S. Yeh, and T. Y. Tseng, Electrochem. Solid-State Lett. 14, H135 (2011).
Y. C. Huang, W. L. Tsai, C. H. Chou, C. Y. Wan, C. Hsiao, and H. C. Cheng, IEEE Electron Device Lett. 34, 1244 (2013).
H. D. Kim, M. J. Yun, S. M. Hong, and T. G. Kim, Nanotechnology 25, 125201 (2014).
J. Yoon, H. Choi, D. Lee, J. B. Park, J. Lee, D. J. Seong, Y. Ju, M. Chang, S. Jung, and H. Hwang, IEEE Electron Device Lett. 30, 457 (2009).
K. C. Chang, T. M. Tsai, T. C. Chang, Y. E. Syu, S. L. Chuang, C. H. Li, D. S. Gan, and S. M. Sze, J. Electrochem. Soc. 15, H65 (2012).
W. Banerjee, S. Z. Rahaman, A. Prakash, and S. Maikap, Jpn. J. Appl. Phys. 50, 10PH01 (2011).
Y. Song, Y. Liu, Y. Wang, M. Wang, X. Tian, L. Yang, and Y. Lin, IEEE Electron Device Lett. 32, 1439 (2011).
G. K. Dalapati, C. K. Chia, C. C. Tan, H. R. Tan, S. Y. Chiam, J. R. Dong, A. Das, S. Chattopadhyay, C. Mahata, C. K. Maiti, and D. Z. Chi, ACS Appl. Mater. Interfaces 5, 949 (2013).
T. H. Hou, K. L. Lin, J. Shieh, J. H. Lin, C. T. Chou, and Y. J. Lee, Appl. Phys. Lett. 98, 103511 (2011).
Y. C. Chang and Y. H. Wang, ACS Appl. Mater. Interfaces 6, 5413 (2014).
Y. Sun, X. Yan, X. Zheng, Y. Liu, Y. Zhao, Y. Shen, Q. Liao, and Y. Zhang, ACS Appl. Mater. Interfaces 7, 7382 (2015).
S. Gao, C. Chen, Z. Zhai, H. Y. Liu, Y. S. Lin, S. Z. Li, S. H. Lu, G. Y. Wang, C. Song, F. Zeng, and F. Pan, Appl. Phys. Lett. 105, 063504 (2014).
Y. L. Chung, W. H. Cheng, J. S. Jeng, W. C. Chen, S. A. Jhan, and J. S. Chen, J. Appl. Phys. 116, 164502 (2014).
H. Tian, H. Y. Chen, T. L. Ren, C. Li, Q. T. Xue, M. A. Mohammad, C. Wu, Y. Yang, and H.-S. P. Wong, Nano Lett. 14, 3214 (2014).
D. Ielmini, F. Nardi, and C. Cagli, Nanotechnology 22, 254022 (2011).
J. J. Yang, F. Miao, M. D. Pickett, D. A. A. Ohlberg, D. R. Stewart, C. N. Lau, and R. S. Williams, Nanotechnology 20, 215201 (2009).

Data & Media loading...


Article metrics loading...



Owing to their small physical size and low power consumption, resistive random access memory (RRAM) devices are potential for future memory and logic applications in microelectronics. In this study, a new resistive switching material structure, TiO/silver nanoparticles/TiO /AlTiO, fabricated between the fluorine-doped tin oxide bottom electrode and the indium tin oxide top electrode is demonstrated. The device exhibits excellent memory performances, such as low operation voltage (<±1 V), low operation power, small variation in resistance, reliable data retention, and a large memory window. The current-voltage measurement shows that the conducting mechanism in the device at the high resistance state is via electron hopping between oxygen vacancies in the resistive switching material. When the device is switched to the low resistance state, conducting filaments are formed in the resistive switching material as a result of accumulation of oxygen vacancies. The bottom AlTiO layer in the device structure limits the formation of conducting filaments; therefore, the current and power consumption of device operation are significantly reduced.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd