Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4955054
1.
A. Groβ, Phys. Rev. Lett. 103, 246101 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.246101
2.
B. N. J. Persson and R. Ryberg, Phys. Rev. B 40, 10273 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.10273
3.
T. A. Westrich, K. A. Dahlberg, M. Kaviany, and J. W. Schwank, J. Phys. Chem. C 115, 16537 (2011).
http://dx.doi.org/10.1021/jp204405h
4.
J. R. Manson, Handbook of Surface Science 3, 53 (2008).
http://dx.doi.org/10.1016/S1573-4331(08)00003-6
5.
C. J. Hagedorn, M. J. Weiss, and W. H. Weinberg, Phys. Rev. B 60, 14016 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.R14016
6.
C. T. Rettner, D. J. Auerbach, J. C. Tully, and A. W. Kleyn, J. Phys. Chem 100, 13021 (1996).
http://dx.doi.org/10.1021/jp9536007
7.
M. Kaviany, Heat Transfer Physics, 2nd ed. (Cambridge University Press, New York, 2014).
8.
L. Liu, Y. P. Feng, and Z.X. Shen, Phys. Rev. B 68, 104102 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.104102
9.
B. Altintas, C. Parlak, C. Bozkurt, and R. Eryiğit, Eur. Phys. J. B 79, 301 (2011).
http://dx.doi.org/10.1140/epjb/e2010-10660-4
10.
R. Arenal and A. Lopez-Bezanilla, WIREs Comput. Mol. Sci. 5, 299 (2015).
http://dx.doi.org/10.1002/wcms.1219
11.
G. Kern, G. Kresse, and J. Hafner, Phys. Rev. B 59, 8551 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.8551
12.
L. Wirtz, A. Rubio, R. A. delaConcha, and A. Loiseau, Phys. Rev. B 68, 045425 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.045425
13.
J. Serrano, A. Bosak, R. Arenal, M. Krisch, K. Watanabe, T. Taniguchi, H. Kanda, A. Rubio, and L. Wirtz, Phys. Rev. Lett. 98, 095503 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.095503
14.
H. Sevinçli, W. Li, N. Mingo, G. Cuniberti, and S. Roche, Phys. Rev. B 84, 205444 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.205444
15.
X. L. Ruan and M. Kaviany, Phys. Rev. B 73, 155422 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.155422
16.
H. Bao, X. L. Ruan, and M. Kaviany, Phys. Rev. B 78, 125417 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.125417
17.
L. S. Bartell and R. M. Gavin, Jr., J. Chem. Phys. 48, 2466 (1968).
http://dx.doi.org/10.1063/1.1669471
18.
R. K. Sharma, Chemistry of Hydrides and Carbides (Discovery Publishing House, New Delhi, 2007).
19.
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
20.
P. Giannozzi et al., J. Phys. Condens. Mat. 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
21.
J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
22.
H. P. Koch, R. Laskowski, P. Blaha, and K. Schwarz, Phys. Rev. B 84, 245410 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.245410
23.
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
24.
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
25.
H. Kim, M. H. Kim, and M. Kaviany, J. Appl. Phys 115, 123510 (2014).
http://dx.doi.org/10.1063/1.4869669
26.
G. Kresse, M. Marsman, and J. Furthmüller, VASP the GUIDE (http://cms.mpi.univie.ac .at/vasp/vasp/vasp.html, 2015).
27.
P. Nieto, E. Pijper, D. Barredo, G. Laurent, R. A. Olsen, E-J. Baerends, G-J. Kroes, and D. Farias, Science 312, 86 (2006).
http://dx.doi.org/10.1126/science.1123057
28.
J. I. Juaristi, M. Alducin, R. Díez Muiño, H. F. Busnengo, and A. Salin, Phys. Rev. Lett. 100, 116102 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.116102
29.
N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.1993
30.
J. S. Arellano, J. Phys.: Conference Series 582, 012060 (2015).
http://dx.doi.org/10.1088/1742-6596/582/1/012060
31.
J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
32.
G. P. Srivastava, The Physics of Phonons (Adam hilger, Bristol, 1990).
33.
O. Hellman and I. A. Abrikosov, Phys. Rev. B 88, 144301 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.144301
34.
D. Ecsedy and P. Klemens, Phys. Rev. B 15, 5957 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.5957
35.
S. Shin and M. Kaviany, Phys. Rev. B 91, 165310 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.165310
36.
C. Melnick and M. Kaviany, Phys. Rev. B 93, 125203 (2016).
http://dx.doi.org/10.1103/PhysRevB.93.125203
37.
S. Baroni, S. de Gironcoli, A. D. Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.515
38.
X. Gonze and J. -P. Vigneron, Phys. Rev. B 39, 13120 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.13120
39.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
40.
S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
41.
S. Grimme, S. Ehrlich, and L. Goerigk, J. Comp. Chem. 32, 1456 (2011).
http://dx.doi.org/10.1002/jcc.21759
42.
A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007).
http://dx.doi.org/10.1063/1.2795701
43.
A. Otero de la Roza and E. R. Johnson, J. Chem. Phys. 136, 174109 (2012).
http://dx.doi.org/10.1063/1.4705760
44.
G. Henkelman, B. P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).
http://dx.doi.org/10.1063/1.1329672
45.
M. Garcia-Melchor and N. Lopez, J. Phys. Chem. C 118, 10921 (2014).
http://dx.doi.org/10.1021/jp502309r
46.
Y-G. Wang, D. Mei, V-A. Glezakou, J. Li, and R. Rousseau, Nat. Commun. 6, 6511 (2015).
http://dx.doi.org/10.1038/ncomms7511
47.
R. D. Muino and H. F. Busnengo, Dynamics of Gas-Surface Interactions (Springer-Verlag, Berlin, 2013).
48.
T. Sahoo, S. Sardar, and S. Adhikari, Phys. Scr. 84, 028105 (2011).
http://dx.doi.org/10.1088/0031-8949/84/02/028105
49.
H. H. Brongersma and R. A. van Santen, Fundamental Aspects of Heterogeneous Catalysis Studied by Particle Beams (Plenum Press, New York, 1991).
50.
C. Hess, S. Funk, M. Bonn, D. N. Denzler, M. Wolf, and G. Ertl, Appl. Phys. A 71, 477 (2000).
http://dx.doi.org/10.1007/s003390000703
51.
M. Beye et al., Phys. Rev. Lett. 110, 186101 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.186101
52.
M. Dell’Angela et al., Science 339, 1302 (2013).
http://dx.doi.org/10.1126/science.1231711
53.
A. Trabattoni et al., Phys. Rev. X 5, 041053 (2015).
54.
See supplementary material at http://dx.doi.org/10.1063/1.4955054 for Movie I (snapshot movie obtained from reaction pathway calculations) and Movie II – IV (AIMD results for dissociative chemisorption with different atomic masses of h-BN thin film).[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4955054
Loading
/content/aip/journal/adva/6/6/10.1063/1.4955054
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4955054
2016-06-27
2016-09-30

Abstract

Using simulations, we postulate and show that heterocatalysis on large-bandgap semiconductors can be controlled by substrate phonons, i.e., phonocatalysis. With calculations, including molecular dynamic simulations, the chemisorbed dissociation of XeF on h-BN surface leads to formation of XeF and two surface F/h-BN bonds. The reaction pathway and energies are evaluated, and the sorption and reaction emitted/absorbed phonons are identified through spectral analysis of the surface atomic motion. Due to large bandgap, the atomic vibration (phonon) energy transfer channels dominate and among them is the match between the F/h-BN covalent bond stretching and the optical phonons. We show that the chemisorbed dissociation (the pathway activation ascent) requires absorption of large-energy optical phonons. Then using progressively heavier isotopes of B and N atoms, we show that limiting these high-energy optical phonons inhibits the chemisorbed dissociation, i.e., controllable phonocatalysis.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4955054.html;jsessionid=YdkF5QVVsp3dKUlo2GgtQpWv.x-aip-live-06?itemId=/content/aip/journal/adva/6/6/10.1063/1.4955054&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4955054&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4955054'
Right1,Right2,Right3,