Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4955055
1.
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).
http://dx.doi.org/10.1038/318162a0
2.
S. Iijima, Nature 354, 56 (1991).
http://dx.doi.org/10.1038/354056a0
3.
J. Robertson and E. P. O’Reilly, Phys. Rev. B 35, 2946 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.2946
4.
K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. 102, 10451 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
5.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
6.
G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Chem. Commun. 46, 3256 (2010).
http://dx.doi.org/10.1039/B922733D
7.
W.-J. Yin, Y.-P. Chen, Y.-E. Xie, L.-M. Liu, and S. B. Zhang, Phys. Chem. Chem. Phys. 17, 14083 (2015).
http://dx.doi.org/10.1039/C5CP00803D
8.
B. Mandal, S. Sarkar, A. Pramanik, and P. Sarkar, Phys. Chem. Chem. Phys. 15, 21001 (2013).
http://dx.doi.org/10.1039/C3CP53390E
9.
M. Zhang, H. Liu, Y. Du, X. Zhang, Y. Wang, and Q. Li, Phys. Chem. Chem. Phys. 15, 14120 (2013).
http://dx.doi.org/10.1039/C3CP51746B
10.
X.-Q. Wang, H.-D. Li, and J.-T. Wang, Phys. Chem. Chem. Phys. 15, 2024 (2013).
http://dx.doi.org/10.1039/C2CP43070C
11.
M. Hu, Y. Shu, L. Cui, B. Xu, D. Yu, and J. He, Phys. Chem. Chem. Phys. 16, 18118 (2014).
http://dx.doi.org/10.1039/C4CP02161D
12.
M. Hu, X. Dong, B. Yang, B. Xu, D. Yu, and J. He, Phys. Chem. Chem. Phys. 17, 13028 (2015).
http://dx.doi.org/10.1039/C5CP01621E
13.
C. He, L. Sun, C. Zhang, and J. Zhong, Phys. Chem. Chem. Phys. 15, 680 (2013).
http://dx.doi.org/10.1039/C2CP43221H
14.
I. A. Baburin, D. M. Proserpio, V. A. Saleev, and A. V. Shipilova, Phys. Chem. Chem. Phys. 17, 1332 (2015).
http://dx.doi.org/10.1039/C4CP04569F
15.
X.-L. Sheng, Q.-B. Yan, F. Ye, Q.-R. Zheng, and G. Su, Phys. Rev. Lett. 106, 155703 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.155703
16.
C. Su, H. Jiang, and J. Feng, Phys. Rev. B 87, 075453 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.075453
17.
A. Kuc and G. Seifert, Phys. Rev. B 74, 214104 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.214104
18.
J.-T. Wang, C. Chen, and Y. Kawazoe, Phys. Rev. B 85, 033410 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.033410
19.
Y. Lin, L. Zhang, H.-k. Mao, P. Chow, Y. Xiao, M. Baldini, J. Shu, and W. L. Mao, Phys. Rev. Lett. 107, 175504 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.175504
20.
H. Niu, X.-Q. Chen, S. Wang, D. Li, W. L. Mao, and Y. Li, Phys. Rev. Lett. 108, 135501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.135501
21.
Q. Zhu, A. R. Oganov, M. A. Salvadó, P. Pertierra, and A. O. Lyakhov, Phys. Rev. B 83, 193410 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.193410
22.
J. Y. Jo and B. G. Kim, Phys. Rev. B 86, 075151 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.075151
23.
Y. Liu, G. Wang, Q. Huang, L. Guo, and X. Chen, Phys. Rev. Lett. 108, 225505 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.225505
24.
D. Selli, I. A. Baburin, R. Martoňák, and S. Leoni, Phys. Rev. B 84, 161411 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.161411
25.
Q. Zhu, Q. Zeng, and A. R. Oganov, Phys. Rev. B 85, 201407 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.201407
26.
K. Umemoto, R. M. Wentzcovitch, S. Saito, and T. Miyake, Phys. Rev. Lett. 104, 125504 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.125504
27.
A. Lherbier, H. Terrones, and J.-C. Charlier, Phys. Rev. B 90, 125434 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.125434
28.
M. Itoh, M. Kotani, H. Naito, T. Sunada, Y. Kawazoe, and T. Adschiri, Phys. Rev. Lett. 102, 055703 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.055703
29.
S. Zhang, Q. Wang, X. Chen, and P. Jena, Proc. Natl. Acad. Sci. 110, 18809 (2013).
http://dx.doi.org/10.1073/pnas.1311028110
30.
S. Zhang, H. Liu, C. Huang, G. Cui, and Y. Li, Chem. Commun. 51, 1834 (2015).
http://dx.doi.org/10.1039/C4CC08706B
31.
Y. Jiao, A. Du, M. Hankel, Z. Zhu, V. Rudolph, and S. C. Smith, Chem. Commun. 47, 11843 (2011).
http://dx.doi.org/10.1039/C1CC15129K
32.
W. Zhang, A. R. Oganov, A. F. Goncharov, Q. Zhu, S. E. Boulfelfel, A. O. Lyakhov, E. Stavrou, M. Somayazulu, V. B. Prakapenka, and K. Zuzana, Science 342, 1502 (2013).
http://dx.doi.org/10.1126/science.1244989
33.
F. Bundy, W. Bassett, M. Weathers, R. Hemley, H. Mao, and A. Goncharov, Carbon 34, 141 (1996).
http://dx.doi.org/10.1016/0008-6223(96)00170-4
34.
W. L. Mao, H.-k. Mao, P. J. Eng, T. P. Trainor, M. Newville, C.-c. Kao, D. L. Heinz, J. Shu, Y. Meng, and R. J. Hemley, Science 302, 425 (2003).
http://dx.doi.org/10.1126/science.1089713
35.
J.-T. Wang, C. Chen, and Y. Kawazoe, Phys. Rev. Lett. 106, 075501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.075501
36.
Q. Li, Y. Ma, A. R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.-K. Mao, and G. Zou, Phys. Rev. Lett. 102, 175506 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.175506
37.
M. Amsler, J. A. Flores-Livas, L. Lehtovaara, F. Balima, S. A. Ghasemi, D. Machon, S. Pailhès, A. Willand, D. Caliste, S. Botti, A. San Miguel, S. Goedecker, and M. A. L. Marques, Phys. Rev. Lett. 108, 065501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.065501
38.
J. Tang, L.-C. Qin, T. Sasaki, M. Yudasaka, A. Matsushita, and S. Iijima, Phys. Rev. Lett. 85, 1887 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1887
39.
V. N. Khabashesku, Z. Gu, B. Brinson, J. L. Zimmerman, J. L. Margrave, V. A. Davydov, L. S. Kashevarova, and A. V. Rakhmanina, J. Phys. Chem. B 106, 11155 (2002).
http://dx.doi.org/10.1021/jp025983w
40.
M. Popov, M. Kyotani, R. J. Nemanich, and Y. Koga, Phys. Rev. B 65, 033408 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.033408
41.
M. Popov, M. Kyotani, and Y. Koga, Diamond and Related Materials 12, 833 (2003).
http://dx.doi.org/10.1016/S0925-9635(02)00335-7
42.
M. J. Bucknum and E. A. Castro, J. Chem. Theory Comput. 2, 775 (2006).
http://dx.doi.org/10.1021/ct060003n
43.
R. S. Kumar, M. G. Pravica, A. L. Cornelius, M. F. Nicol, M. Y. Hu, and P. C. Chow, Diam. Relat. Mater. 16, 1250 (2007).
http://dx.doi.org/10.1016/j.diamond.2006.11.103
44.
X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R. O. Jones, and Y. Ando, Phys. Rev. Lett. 92, 125502 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.125502
45.
X. Xu, J. Zhai, L. Li, Y. Chen, Y. Yu, M. Zhang, S. Ruan, and Z. Tang, Sci. Rep. 4, 6761 (2014).
http://dx.doi.org/10.1038/srep06761
46.
T. Hayashi, Y. A. Kim, T. Matoba, M. Esaka, K. Nishimura, T. Tsukada, M. Endo, and M. S. Dresselhaus, Nano Lett. 3, 887 (2003).
http://dx.doi.org/10.1021/nl034080r
47.
F. Yang, X. Wang, D. Zhang, J. Yang, L. Da, Z. Xu, J. Wei, J.-Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, F. Ding, and Y. Li, Nature 510, 522 (2014).
http://dx.doi.org/10.1038/nature13434
48.
M. Hu, Z. Zhao, F. Tian, A. R. Oganov, Q. Wang, M. Xiong, C. Fan, B. Wen, J. He, D. Yu, H.-T. Wang, B. Xu, and Y. Tian, Sci. Rep. 3, 1331 (2013).
49.
S. Xu, L. Wang, Y. Liu, R. Yuan, X. Xu, and Y. Cai, Phys. Lett. A 379, 2116 (2015).
http://dx.doi.org/10.1016/j.physleta.2015.06.037
50.
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Computer Physics Communications 183, 2063 (2012).
http://dx.doi.org/10.1016/j.cpc.2012.05.008
51.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
52.
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
53.
G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
54.
G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
55.
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
56.
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
57.
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
58.
A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.134106
59.
M. H. Grimsditch and A. K. Ramdas, Phys. Rev. B 11, 3139 (1975).
http://dx.doi.org/10.1103/PhysRevB.11.3139
60.
H. J. McSkimin, P. Andreatch, and P. Glynn, J. Appl. Phys. 43, 985 (1972).
http://dx.doi.org/10.1063/1.1661318
61.
C. A. Klein and G. F. Cardinale, Diam. Relat. Mater. 2, 918 (1993).
http://dx.doi.org/10.1016/0925-9635(93)90250-6
62.
Y. X. Zhao and I. L. Spain, Phys. Rev. B 40, 993 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.993
63.
M. Long, L. Tang, D. Wang, Y. Li, and Z. Shuai, ACS Nano 5, 2593 (2011).
http://dx.doi.org/10.1021/nn102472s
64.
G. Grimvall, B. Magyari-Köpe, V. Ozoliņš, and K. A. Persson, Rev. Mod. Phys. 84, 945 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.945
65.
R. Hill, Proc. Phys. Soc. A 65, 349 (1952).
http://dx.doi.org/10.1088/0370-1298/65/5/307
66.
X.-Q. Chen, H. Niu, C. Franchini, D. Li, and Y. Li, Phys. Rev. B 84, 121405 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.121405
67.
A. Šimunek and J. Vackář, Phys. Rev. Lett. 96, 085501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.085501
68.
S. Pugh, Philos. Mag. 45, 823 (1954).
http://dx.doi.org/10.1103/PhysRevB.13.5188
69.
C. A. Klein, T. M. Hartnett, and C. J. Robinson, Phys. Rev. B 45, 12854 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.12854
70.
S. A. Solin and A. K. Ramdas, Phys. Rev. B 1, 1687 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.1687
71.
J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejón, Phys. Rev. Lett. 92, 075501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.075501
72.
J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
http://dx.doi.org/10.1063/1.1564060
73.
J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
http://dx.doi.org/10.1063/1.2204597
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4955055
Loading
/content/aip/journal/adva/6/6/10.1063/1.4955055
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4955055
2016-06-27
2016-09-27

Abstract

Carbon nanotubes (CNTs) with homogeneous diameters have been proven to transform into new carbon allotropes under pressure but no studies on the compression of inhomogeneous CNTs have been reported. In this study, we propose to build new carbon allotropes from the bottom-up by applying pressure on symmetry-matched inhomogeneous CNTs. We find that the (3,0) CNT with point group C and the (6,0) CNT with point group C form an all 3 hybridized hexagonal 3060-Carbon crystal, but the (4,0) CNT with point group D and the (8,0) CNT with point group D polymerize into a 2+ 3 hybridized tetragonal 4080-Carbon structure. Their thermodynamic, mechanical and dynamic stabilities show that they are potential carbon allotropes to be experimentally synthesized. The multiporous structures, excellently mechanical properties and special electronic structures (semiconductive 3060-Carbon and semimetallic 4080-Carbon) imply their many potential applications, such as gases purification, hydrogen storage and lightweight semiconductor devices. In addition, we simulate their feature XRD patterns which are helpful for identifying the two carbon crystals in future experimental studies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4955055.html;jsessionid=i21l2ZkiH7t7pAukTzzufEGR.x-aip-live-02?itemId=/content/aip/journal/adva/6/6/10.1063/1.4955055&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4955055&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4955055'
Right1,Right2,Right3,