Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325328 (2006).
T. Oto, R.G. Banal, K. Kataoka, M. Funato, and Y. Kawakami, “100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam,” Nat. Photonics 4, 767771 (2010).
Y. Cho, B. Dierre, N. Fukata, N. Hirosaki, K. Marumoto, D. Son, K. Takahashi, T. Takeda, and T. Sekiguchi, “Defects and luminescence control of AlN ceramic by Si-doping,” Scripta Mater. 110, 109112 (2016).
W. Wang, P. Zhang, X. B. Wang, X. Lei, H. Ding, and H. Yang, “Bifunctional AlN:Tb semiconductor with luminescence and photocatalytic properties,” RSC Adv. 5, 9069890704 (2015).
L. Jin, H. Zhang, R. Pan, P. Xu, J. Han, X. Zhang, Q. Yuan, Z. Zhang, X. Wang, Y. Wang, and B. Song, “Observation of the Long Afterglow in AlN Helices,” Nano Lett. 15, 65756581 (2015).
L. B. Jiang, S. J. Jin, W. J. Wang, S. B. Zuo, Z. L. Li, S. C. Wang, K. X. Zhu, Z. Y. Wei, and X. L. Chen, “Observation of stimulated emission from a single Fe-doped AlN triangular fiber at room temperature,” Scientific Reports 5, 17979-1-5 (2015).
X. J. Wang, R. J. Xie, B. Dierre, T. Takeda, T. Suehiro, N. Hirosaki, T. Sekiguchi, H. Li, and Z. Sun, “A novel and high brightness AlN:Mn2+ red phosphor for field emission displays,” Dalton Trans. 43, 61206127 (2014).
L. Bergman and J. L. McHale, International Standard Book Number-13: 978-1-4398-3480-0 (eBook - PDF) (CRC PressTaylor & Francis Group), pp. 2168.
A. L. Martin, C. M. Spalding, V. I. Dimitrova, P. G. Van Patten, M. L. Caldwell, M. E. Kordesch, and H. H. Richardson, “Visible emission from amorphous AlN thin-film phosphors with Cu, Mn, or Cr,” J. Vac. Sci. Technol. A 19(4), 1894 (2001).
H. Li, X. L. Chen, B. Song, H. Q. Bao, and W. J. Wang, “Copper-doped AlN polycrystalline powders: A class of room-temperature ferromagnetic materials,” Solid State Commun. 151, 499502 (2011).
H. Li, H. Q. Bao, B. Song, W. J. Wang, and X. L. Chen, “Observation of ferromagnetic ordering in Ni-doped AlN polycrystalline powders,” Solid State Commun. 148, 406409 (2008).
U. Vetter, J. Zenneck, and H. Hofsäss, “Intense ultraviolet cathodoluminescence at 318 nm from Gd3+-doped AlN,” Appl. Phys. Lett. 83, 21452147 (2003).
K. Inoue, N. Hirosaki, R.-J. Xie, and T. Takeda, “Highly Efficient and Thermally Stable Blue-Emitting AlN:Eu2+ Phosphor for Ultraviolet White Light-Emitting Diodes,” J. Phys. Chem. C 113, 93929397 (2009).
T.-C. Liu, H. Kominami, H. F. Greer, W. Zhou, Y. Nakanishi, and R.-S. Liu, “Blue Emission by Interstitial Site Occupation of Ce3+ in AlN,” Chem. Mater. 24, 34863490 (2012).
Q. Y. Wu, Z. G. Huang, R. Wu, L, and J. Chen, “Cu-doped AlN: A dilute magnetic semiconductor free of magnetic cations from first-principles study,” J. Phys.: Condens. Matter. 19, 056209-1-6 (2007).
Y. S. Xu, B. B. Yao, D. Liu, W. W. Lei, P. W. Zhu, Q. L. Cui, and G. T. Zou, “Room temperature ferromagnetism in new diluted magnetic semiconductor AlN:Mg nanowires,” CrystEngComm. 15, 32713274 (2013).
Z. H. Zhang, X. F Wang, J. B. Xu, S. Muller, C. Ronning, and Q. Li, “Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures,” Nature Nanotechnology 4, 523527 (2009).
J. R. Carrajal, Fullprof Version 3.5, Laboratoire Leon Brillouin (CEA-CNRS).
S. D. Tiwari and K. P. Rarker, “Magnetic properties of NiO nanoparticles,” Thin Solid Films 505, 113117 (2006).
A. Boultif and D. Louer, “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731 (2004).
H. Cui, X. Wu, Y. Chen, J. Zhang, and R. I. Boughton, Mater. Res. Bull. 61, 511 (2015).
X. D. Gao, E. Y. Jiang, H. H. Liu, W. B. Mi, Z. Q. Li, P. Wu, and H. L. Bai, Appl. Surf. Sci. 253, 5431 (2007).
J. Ding, Q. Zhong, and S. Zhang, RSC Adv. 4, 5394 (2014).
M. Armbrüster, K. Kovnir, M. Friedrich, D. Teschner, G. Wowsnick, M. Hahne, P. Gille, L. Szentmiklósi, M. Feuerbacher, M. Heggen, F. Girgsdies, D. Rosenthal, R. Schlögl, and Y. Grin, Nat. Mater. 11, 690 (2012).
X. P. Kuang, H. Y. Zhang, G. G. Wang, L. Cui, C. Zhu, L. Jin, R. Sun, and J. C. Han, Appl. Surf. Sci. 263, 62 (2012).
E. Lewin, M. Parlinska-Wojtan, and J. Patscheider, J. Mater. Chem. 22, 16761 (2012).
X. L. Sun, J. Xiong, W. H. Zhang, L. Liu, and H. S. Gu, “Investigation of blue luminescence in Mg doped AlN films,” J. Alloys Compd. 621, 314318 (2015).
C. Q. Zhuang, J. J. Zhao, F. C. Jia, C. Y. Guan, Z. L. Wu, Y. Z. Bai, and X. Jiang, “Tuning bond contents in B–C–N films via temperature and bias voltage within RF magnetron sputtering,” Surf. Coat. Technol. 204, 713717 (2009).
J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, “Donor impurity band exchange in dilute ferromagnetic oxides,” Nat. Mater. 4, 173179 (2005).
U. Gerstmann, A. T. Blumenau, and H. Overhof, “Transition metal defects in group-III nitrides: An ab initio calculation of hyperfine interactions and optical transitions,” Phy. Rev. B 63, 075204-1-9 (2001).
E. Malguth, A. Hoffmann, W. Gehlhoff, O. Gelhausen, M. R. Phillips, and X. Xu, “Structural and electronic properties of Fe3+ and Fe2+ centers in GaN from optical and EPR experiments,” Phys. Rev. B 74, 165202-1-12 (2006).
X. H. Ji, S. P. Lau, S. F. Yu, H. Y. Yang, T. S. Herng, A. Sedhain, J. Y. Lin, H. X. Jiang, K. S. Teng, and J. S. Chen, “Ultraviolet photoluminescence from ferromagnetic Fe-doped AlN nanorods,” Appl. Phys. Lett. 90, 193118-1-3 (2007).
See supplementary material at for SEM images of AlN:Fe sample (sample B) and undoped AlN, the Raman spectroscopy of AlN:Fe sample (sample B), and the PL excitation spectrum of undoped AlN and AlN:Fe (sample B).[Supplementary Material]

Data & Media loading...


Article metrics loading...



AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe2+ state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd