Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4955141
1.
J.-Y. Lee, S.T. Connor, Y. Cui, and P. Peumans, Nano Lett. 10, 1276 (2010).
http://dx.doi.org/10.1021/nl903892x
2.
W.O. Akande, Y. Cao, N. Yao, and W. Soboyejo, J. Appl. Phys. 107, 1 (2010).
http://dx.doi.org/10.1063/1.3305791
3.
Y. Cao, C. Kim, S.R. Forrest, and W. Soboyejo, J. Appl. Phys. 98, 33713 (2005).
http://dx.doi.org/10.1063/1.1994935
4.
C. Kim, Y. Cao, W.O. Soboyejo, and S.R. Forrest, J. Appl. Phys. 97, 113512 (2005).
http://dx.doi.org/10.1063/1.1900285
5.
M.B. Tucker, D.R. Hines, and T. Li, J. Appl. Phys. 106, 103504 (2009).
http://dx.doi.org/10.1063/1.3259422
6.
T.-F. Guo, S. Pyo, S.-C. Chang, and Y. Yang, Adv. Funct. Mater. 11, 339 (2001).
http://dx.doi.org/10.1002/1616-3028(200110)11:5<339::AID-ADFM339>3.0.CO;2-S
7.
H. Czichos, J. Phys. D. Appl. Phys. 5, 1890 (1972).
http://dx.doi.org/10.1088/0022-3727/5/10/321
8.
J. Song and D.J. Srolovitz, J. Mech. Phys. Solids 57, 776 (2009).
http://dx.doi.org/10.1016/j.jmps.2008.12.001
9.
Y. Lu, J.Y. Huang, C. Wang, S. Sun, and J. Lou, Nat. Nanotechnol. 5, 218 (2010).
http://dx.doi.org/10.1038/nnano.2010.4
10.
J.J. Dumond and H.Y. Low, J. Vac. Sci. Technol. B 30, 10801 (2012).
http://dx.doi.org/10.1116/1.3661355
11.
A.M. Kendale and D.L. Trumper, US7665983 B2 (2010).
12.
M. Geissler, H. Wolf, R. Stutz, E. Delamarche, U.W. Grummt, B. Michel, and A. Bietsch, Langmuir 19, 6301 (2003).
http://dx.doi.org/10.1021/la034464x
13.
A. Bietsch and B. Michel, J. Appl. Phys. 88, 4310 (2000).
http://dx.doi.org/10.1063/1.1289816
14.
L.M. Campos, T.T. Truong, D.E. Shim, M.D. Dimitriou, D. Shir, I. Meinel, J.A. Gerbec, H.T. Hahn, J.A. Rogers, and C.J. Hawker, Chem. Mater. 21, 5319 (2009).
http://dx.doi.org/10.1021/cm902506a
15.
C. Kim and S.R. Forrest, Adv. Mater. 15, 541 (2003).
http://dx.doi.org/10.1002/adma.200390127
16.
J. Du, T. Tong, W. Akande, A. Tsakiridou, and W. Soboyejo, Disp. Technol. J. 9, 601 (2013).
http://dx.doi.org/10.1109/JDT.2013.2253085
17.
Z. Wang, R. Xing, X. Yu, and Y. Han, Nanoscale 3, 2663 (2011).
http://dx.doi.org/10.1039/c1nr10039d
18.
M.M. Ling and Z. Bao, Chem. Mater. 16, 4824 (2004).
http://dx.doi.org/10.1021/cm0496117
19.
C. Kim, P.E. Burrows, and S.R. Forrest, Science (80-. ) 288, 831 (2000).
http://dx.doi.org/10.1126/science.288.5467.831
20.
D. V Wagle and G.A. Baker, Mater. Horizons (2015).
21.
Z.S. Pereira and E.Z. Da Silva, J. Phys. Chem. C 115, 22870 (2011).
http://dx.doi.org/10.1021/jp207842v
22.
O.K. Oyewole, D. Yu, J. Du, J. Asare, V.C. Anye, A. Fashina, M.G.Z. Kana, and W.O. Soboyejo, J. Appl. Phys. 118, 075302 (2015).
http://dx.doi.org/10.1063/1.4928729
23.
Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti, and W. Soboyejo, Mater. Sci. Eng. A 427, 232 (2006).
http://dx.doi.org/10.1016/j.msea.2006.04.080
24.
E.E. Gdoutos and V. Balopoulos, 37 (2010).
25.
M.B. Modi and S.K. Sitaraman, Eng. Fract. Mech. 71, 1219 (2004).
http://dx.doi.org/10.1016/S0013-7944(03)00210-8
26.
B. Lauke and T. Schu, 21, 55 (2001).
27.
D.Y. Momodu, T. Tong, M.G.Z. Kana, A. V Chioh, and W.O. Soboyejo, J. Appl. Phys. 115, 084504 (2014).
http://dx.doi.org/10.1063/1.4867051
28.
B. Agyei-Tuffour, E.R. Rwenyagila, J. Asare, O.K. Oyewole, M.G.Z. Kana, D.M. O’Carroll, and W.O. Soboyejo, Adv. Mater. Res. 1132, 204 (2016).
http://dx.doi.org/10.4028/www.scientific.net/AMR.1132.204
29.
C.H. Mastrangelo and C.H. Hsu, Solid-State Sens. Actuator Work. 5th Tech. Dig. IEEE 212, 208 (1992).
http://dx.doi.org/10.1109/SOLSEN.1992.228291
30.
J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, and A.B. Holmes, Nature 347, 539 (1990).
http://dx.doi.org/10.1038/347539a0
31.
F.T. Chiang and J.P. Hung, J. Mech. Sci. Technol. 24, 1235 (2010).
http://dx.doi.org/10.1007/s12206-010-0401-9
32.
I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).
http://dx.doi.org/10.1016/0020-7225(65)90019-4
33.
D. Yu, O.K. Oyewole, D. Kwabi, T. Tong, V.C. Anye, J. Asare, E. Rwenyagila, A. Fashina, O. Akogwu, J. Du, and W.O. Soboyejo, J. Appl. Phys. 116, 074506 (2014).
http://dx.doi.org/10.1063/1.4892393
34.
G. Wei, B. Bhushan, and S. Joshua Jacobs, Ultramicroscopy 100, 375 (2004).
http://dx.doi.org/10.1016/j.ultramic.2003.11.015
35.
O.K. Oyewole, D. Yu, J. Du, J. Asare, D.O. Oyewole, V.C. Anye, A. Fashina, M.G.Z. Kana, and W.O. Soboyejo, J. Appl. Phys. 117, 235501 (2015).
http://dx.doi.org/10.1063/1.4922665
36.
N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, and G.M. Whitesides, Nature 393, 146 (1998).
http://dx.doi.org/10.1038/30193
37.
D.G. Neerinck and T.J. Vink, Thin Solid Films 278, 12 (1996).
http://dx.doi.org/10.1016/0040-6090(95)08117-8
38.
W. Soboyejo, Mechanical Properties of Engineered Materials (Marcel Dekker, Inc, New York, NY, 2003).
39.
L.J. Gibson, M.F. Ashby, G.N. Karam, U. Wegst, and H.R. Shercliff, The Royal Society 450 (1995).
40.
V. Raghavan, Material Science and Engineering, 4th ed. (Prentice Hall of India Ltd, 1994).
41.
PeriodicTable.com, Math. Elem. Funct. from Wolfram Res. Inc. (2006).
42.
PeriodicTable.com, Math. Elem. Funct. from Wolfram Res. Inc. (2016).
43.
S.R. Dupont, E. Voroshazi, P. Heremans, and R.H. Dauskardt, Org. Electron. Physics, Mater. Appl. 14, 1262 (2013).
44.
T. Tong, B. Babatope, S. Admassie, J. Meng, O. Akwogu, W. Akande, and W.O. Soboyejo, J. Appl. PHYSICS, Am. Inst. Phys. 106, 1 (2009).
45.
H.R. Brown, IBM J. Res. Dev. 38, 379 (1994).
http://dx.doi.org/10.1147/rd.384.0379
46.
F. Erdogan and G.C. Sih, J. Basic Eng. 85, 519 (1963).
http://dx.doi.org/10.1115/1.3656897
47.
K.B. Broberg, Eng. Fract. Mech. 28, 663 (1987).
http://dx.doi.org/10.1016/0013-7944(87)90060-9
48.
J.F. Kalthoff, Proc. an Int. Conf. Dyn. Crack Propag. (1973), pp. 449458.
49.
H. Bergkvist and L. Guex, Int. J. Fract. 15, 429 (1979).
http://dx.doi.org/10.1007/BF00023330
50.
J. Gunnars, P. Stahle, and T.C. Wang, Comput. Mech. Springer 19, 545 (1997).
http://dx.doi.org/10.1007/s004660050207
51.
P. Qiao and J. Wang, Int. J. Solids Struct. 41, 7423 (2004).
http://dx.doi.org/10.1016/j.ijsolstr.2004.06.006
52.
J.W. Hutchinson and Z. Suo, Adv. Appl. Mech. 29, 191 (1992).
53.
Z. Suo and J.W. Hutchinson, Int. J. Fract. 43, 1 (1990).
http://dx.doi.org/10.1007/BF00018123
54.
J. Wang and P. Qiao, J. Mech. Phys. Solids 52, 891 (2004).
http://dx.doi.org/10.1016/S0022-5096(03)00121-2
55.
R.C. Ostergaard, B.F. Sorensen, and P. Brondsted, J. Sandw. Struct. Mater. 9, 445 (2007).
http://dx.doi.org/10.1177/1099636207070578
56.
S. Liu, Y. Mei, and T.Y. Wu, Components, Packag. Manuf. Technol. Part A, IEEE Trans. 18, 618 (1995).
http://dx.doi.org/10.1109/95.465161
57.
N. Rahbar, Y. Yang, and W. Soboyejo, Mater. Sci. Eng. A 488, 381 (2008).
http://dx.doi.org/10.1016/j.msea.2007.11.038
58.
J. Cui, Q. Huang, Q. Wang, and T.J. Marks, Langmuir 17, 2051 (2001).
http://dx.doi.org/10.1021/la010158c
59.
D. Hegemann, H. Brunner, and C. Oehr, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 208, 281 (2003).
http://dx.doi.org/10.1016/S0168-583X(03)00644-X
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4955141
Loading
/content/aip/journal/adva/6/6/10.1063/1.4955141
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4955141
2016-06-28
2016-12-03

Abstract

This paper presents the results of an analytical and computational study of the contacts and interfacial fracture associated with the cold welding of Organic Light Emitting diodes (OLEDs). The effects of impurities (within the possible interfaces) are explored for contacts and interfacial fracture between layers that are relevant to model OLEDs. The models are used to study the effects of adhesion, pressure, thin film layer thickness and dust particle modulus (between the contacting surfaces) on contact profiles around impurities between cold-welded thin films. The lift-off stage of thin films (during cold welding) is then modeled as an interfacial fracture process. A combination of adhesion and interfacial fracture theories is used to provide new insights for the design of improved contact and interfacial separation during cold welding. The implications of the results are discussed for the design and fabrication of cold welded OLED structures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4955141.html;jsessionid=CeEohmtVHunpvxdZvJVc_zbt.x-aip-live-02?itemId=/content/aip/journal/adva/6/6/10.1063/1.4955141&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4955141&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4955141'
Right1,Right2,Right3,