Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4955183
1.
F. P. Bowden and D. Tabor, Proc. R. Soc. Lon. A. Mat. 391 (1939).
http://dx.doi.org/10.1098/rspa.1939.0005
2.
J. F. Archard, Proc. R. Soc. Lon. A. Mat. 243, 190 (1957).
http://dx.doi.org/10.1098/rspa.1957.0214
3.
J. A. Greenwood and J. B. P. Williamson, Proc. R. Soc. Lon. A. Mat. 295, 300 (1966).
http://dx.doi.org/10.1098/rspa.1966.0242
4.
J. A. Greenwood, Brit. J. Appl. Phys. 17, 1621 (1966).
http://dx.doi.org/10.1088/0508-3443/17/12/310
5.
R. Holm, Electrical contacts handbook (Splinger, 1958).
6.
V. Popov, Contact mechanics and friction: physical principles and applications (Springer Science & Business Media, 2010).
7.
L. Kogut and K. Komvopoulos, J. Appl. Phys. 94, 3153 (2003).
http://dx.doi.org/10.1063/1.1592628
8.
C. Fieberg and R. Kneer, Int. J. Heat. Mass. 51, 1017 (2008).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.05.004
9.
M. Rosochowska, R. Balendra, and K. Chodnikiewicz, J. Mater. Process. Tech. 135, 204 (2003).
http://dx.doi.org/10.1016/S0924-0136(02)00897-X
10.
M. A. Lambert and L. S. Fletcher, J. Thermophys. Heat. Tr. 11, 129 (1997).
http://dx.doi.org/10.2514/2.6221
11.
M. A. Lambert and L. S. Fletcher, J. Heat. Transf. 124, 405 (2002).
http://dx.doi.org/10.1115/1.1464565
12.
N. Laraqi and A. Bairi, Int. J. Heat. Mass. 45, 4175 (2002).
http://dx.doi.org/10.1016/S0017-9310(02)00127-8
13.
P. Sadowskiand and S. Stupkiewicz, Wear 268, 77 (2010).
http://dx.doi.org/10.1016/j.wear.2009.06.040
14.
W. G. Sawyer and K. J. Wahl, MRS Bull. 33, 1145 (2008).
http://dx.doi.org/10.1557/mrs2008.244
15.
K. J. Wahl and W. G. Sawyer, MRS Bull. 33, 1159 (2008).
http://dx.doi.org/10.1557/mrs2008.246
16.
A. Ovcharenko, G. Halperin, I. Etsion, and M. Varenberg, Trib. Lett 23, 55 (2006).
http://dx.doi.org/10.1007/s11249-006-9113-9
17.
B. A. Krick, J. R. Vail, J. R. Persson, and W. G. Sawyer, Trib. Lett 45, 185 (2012).
http://dx.doi.org/10.1007/s11249-011-9870-y
18.
H. Uetz and J. Föhl, Wear 49, 243 (1978).
http://dx.doi.org/10.1016/0043-1648(78)90091-1
19.
D. A. Rigney and J. P. Hirth, Wear 53, 345 (1979).
http://dx.doi.org/10.1016/0043-1648(79)90087-5
20.
B. Bhushan, Modern Tribology Handbook (CRC press, 2000), Vol. 1.
21.
J. F. Archard, Wear. 2, 438 (1959).
http://dx.doi.org/10.1016/0043-1648(59)90159-0
22.
M. H. Cocks, Ph.D. thesis, University of Reading, Reading, 1953.
23.
F. E. Kennedy, Y. Lu, and I. Baker, Tribol. Int. 82, 534 (2015).
http://dx.doi.org/10.1016/j.triboint.2013.10.022
24.
H. Shore, J. Wash. Acad. Sci 15, 85 (1925).
25.
M. J. Furey, ASLE Trans. 7, 133 (1964).
http://dx.doi.org/10.1080/05698196408972043
26.
See supplementary material at http://dx.doi.org/10.1063/1.4955183 for experiment results and FEM model setup.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4955183
Loading
/content/aip/journal/adva/6/6/10.1063/1.4955183
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4955183
2016-06-29
2016-12-09

Abstract

Frictional heat is one of the most important topics in tribological research. The real contact area of the frictional pair plays a significant role in accurately estimating the interface temperature, which is closely related to the frictional heat. However, conventional methods for measuring the contact area, such as constriction resistance measurements, are not suitable for dynamic frictional motion because of the electrical and thermal interferences at the contact region. In this study, a novel method is presented for estimating the real contact area during sliding friction. First, the average interface temperature was experimentally measured by the dynamic thermocouple method. Then assuming that the total frictional heat power is constant, the measured temperature was used as a constraint to determine the contact area in a finite element model, giving an estimation for the real contact area. The calculation results show that the real contact area increases with increasing normal load as predicted by contact theories, and decreases with increasing sliding speed, which could be attributable to the contact dynamics of asperities at the interface. Additionally, the limits of the proposed method is discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4955183.html;jsessionid=dfKdLHwLm82och7XJyzODkx1.x-aip-live-03?itemId=/content/aip/journal/adva/6/6/10.1063/1.4955183&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4955183&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4955183'
Right1,Right2,Right3,