Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4955290
1.
Y. Yeshurun, A. P. Malozemoff, and A. Shaulov, Rev. Mod. Phys. 68, 911 (1996).
http://dx.doi.org/10.1103/RevModPhys.68.911
2.
F. Gömöry, Supercond. Sci. Technol. 10, 523 (1997).
http://dx.doi.org/10.1088/0953-2048/10/8/001
3.
V. B. Geshkenbein and A. I. Larkin, Sov. Phys. JETP 60, 369 (1989).
4.
G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
http://dx.doi.org/10.1103/RevModPhys.66.1125
5.
L. Fàbrega, J. Fontcuberta, S. Piñol, C. J. van der Beek, and P. H. Kes, Phys. Rev. B 47, 15250 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.15250
6.
L. Fàbrega, J. Foncuberta, L. Civale, and S. Piñol, Phys. Rev. B 50, 1199 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.1199
7.
E. Bartolomé, A. Palau, A. Llordés, T. Puig, and X. Obradors, Phys. Rev. B 81, 184530 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.184530
8.
G. Prando, P. Carretta, R. De Renzi, S. Sanna, A. Palenzola, M. Putti, and M. Tropeano, Phys. Rev. B 83, 174514 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.174514
9.
V. Ruoco, E. Bartolomé, A. Palau, M. Coll, X. Obradors, and T. Puig, Supercond. Sci. Technol. 25, 122001 (2012).
http://dx.doi.org/10.1088/0953-2048/25/12/122001
10.
E. Bartolomé, V. R. Vlad, A. Calleja, M. Aklalouch, R. Guzmán, J. Arbiol, X. Granados, A. Palau, X. Obradors, T. Puig, and A. Usoskin, Supercond. Sci. Technol. 26, 125004 (2013).
http://dx.doi.org/10.1088/0953-2048/26/12/125004
11.
J. Ge, J. Gutierrez, M. Li, J. Zhang, and V. V. Moshchalkov, Appl. Phys. Lett. 103, 052602 (2013).
http://dx.doi.org/10.1063/1.4816959
12.
L. Miu, P. Mele, I. Ivan, A. M. Ionescu, and D. Miu, J. of Supercond. and Novel Magn. 28, 361 (2015).
http://dx.doi.org/10.1007/s10948-014-2652-7
13.
A. El Tahan, G. Jakob, H. Adrian, and L. Miu, Physica C 1, 470 (2010).
14.
G. Jakob, P. Przyslupski, C. Stölzel, C. Tomé-Rosa, A. Walkenhorst, M. Schmitt, and H. Adrian, Applied Physics Letters 59, 1626 (1991).
http://dx.doi.org/10.1063/1.106251
15.
L. Miu, G. Jakob, P. Haibach, F. Hillmer, H. Adrian, and C. C. Almasan, Phys. Rev. B 57, 3151 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.3151
16.
P. Fabbricatore, S. Farinon, G. Gemme, R. Musenich, R. Parodi, and B. Zhang, Phys. Rev. B 50, 3189 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.3189
17.
J. R. Clem and A. Sanchez, Phys. Rev. B 50, 9355 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.9355
18.
C. P. Bean, Phys. Rev. Lett. 8, 250 (1962).
http://dx.doi.org/10.1103/PhysRevLett.8.250
19.
A. El Tahan, G. Jakob, D. Miu, I. Ivan, P. Badica, and L. Miu, Supercond. Sci. Technol. 24, 045014 (2011).
http://dx.doi.org/10.1088/0953-2048/24/4/045014
20.
E. Zeldov, N. M. Amer, G. Koren, A. Gupta, M. W. McElfresh, and R.J Gambino, Appl. Phys. Lett. 56, 680 (1990).
http://dx.doi.org/10.1063/1.103310
21.
V. M. Vinokur, M. V. Feigel’man, V. B. Geshkenbein, and A. I. Larkin, Phys. Rev. Lett. 65, 259 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.259
22.
M. Golosovsky, M. Tsindlenkht, H. Chayet, and D. Davidov, Phys. Rev. B 50, 470 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.470
23.
E. H. Brandt, Phys. Rev. B 49, 9024 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.9024
24.
V. B. Geshkenbein, M. V. Feigel’man, and V. M. Vinokur, Physica C 185-189, 2511 (1991).
http://dx.doi.org/10.1016/0921-4534(91)91380-M
25.
M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1966), p. 355.
26.
J. Bardeen and M.J. Stephen, Phys. Rev. A 140, 1197 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1197
27.
M. Vanević, Z. Radović, and V. G. Kogan, Phys. Rev. B 87, 144501 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.144501
28.
A. M. Troyanovski, J. Aarts, and P. H. Kes, Nature (London) 399, 665 (1999).
http://dx.doi.org/10.1038/21385
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4955290
Loading
/content/aip/journal/adva/6/6/10.1063/1.4955290
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4955290
2016-06-30
2016-09-27

Abstract

Vortex activation energy in the critical-state related AC magnetic response of superconductors (appearing in the vicinity of the DC irreversibility line) takes large values, as often reported, which is not yet understood. This behavior is essentially different from that of the vortex-creep activation energy at long relaxation time scales, and may become important for AC applications of superconductors. To elucidate this aspect, we investigated the AC signal of almost decoupled [Y BaCuO]/[PrBaCuO] superlattices (with n = 11 or 4 units cells) in perpendicular DC and AC magnetic fields. In these model samples, the length of the hopping vortex segment is fixed by the thickness of superconducting layers and vortices are disentangled, at least at low DC fields. It is shown that the high values result from the large contribution of the pinning enhanced viscous drag in the conditions of thermally activated, non-diffusive vortex motion at short time scales, where the influence of thermally induced vortex fluctuations on pinning is weak.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4955290.html;jsessionid=9PgfeQqGaIHVHicaI3OC6aOy.x-aip-live-03?itemId=/content/aip/journal/adva/6/6/10.1063/1.4955290&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4955290&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4955290'
Right1,Right2,Right3,