Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/7/10.1063/1.4955431
1.
D. Rowe, Thermoelectrics Handbook: Macro to Nano (CRC Press, Boca Raton, 2006).
2.
G. S. Nolas, J. Sharp, and H. Goldsmind, Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001).
3.
M. Zebarjadi, K. Esfarjani, Z. Bian, and A. Shakouri, Nano letters 11, 225 (2010).
http://dx.doi.org/10.1021/nl103581z
4.
M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, and P. Gogna, Advanced Materials 19, 1043 (2007).
http://dx.doi.org/10.1002/adma.200600527
5.
A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy & Environmental Science 2, 466 (2009).
http://dx.doi.org/10.1039/b822664b
6.
C. Dames and G. Chen, in Thermoelectrics Handbook: Macro to Nano, edited by D. M. Row (Taylor & Francis, New York, 2006).
7.
B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).
http://dx.doi.org/10.1126/science.1156446
8.
G. Chen, Physical Review B 57, 14958 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.14958
9.
J. C. Duda, C. J. Kimmer, W. A. Soffa, X. W. Zhou, R. E. Jones, and P. E. Hopkins, Journal of Applied Physics 112, 093515 (2012).
http://dx.doi.org/10.1063/1.4764921
10.
P. E. Hopkins, J. C. Duda, C. W. Petz, and J. A. Floro, Physical Review B 84, 035438 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.035438
11.
T. S. English, J. C. Duda, J. L. Smoyer, D. A. Jordan, P. M. Norris, and L. V. Zhigilei, Physical Review B 85, 035438 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.035438
12.
J. C. Duda, T. S. English, E. S. Piekos, T. E. Beechem, T. W. Kenny, and P. E. Hopkins, Journal of Applied Physics 112, 073519 (2012).
http://dx.doi.org/10.1063/1.4757941
13.
X. W. Zhou, R. E. Jones, C. J. Kimmer, J. C. Duda, and P. E. Hopkins, Physical Review B 87, 094303 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.094303
14.
T. Wang, G. Madsen, and A. Hartmaier, Modelling and Simulation in Materials Science and Engineering 22, 035011 (2014).
http://dx.doi.org/10.1088/0965-0393/22/3/035011
15.
Y. Ni, S. Xiong, S. Volz, and T. Dumitricǎ, Physical Review Letters 113, 124301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.124301
16.
P. E. Hopkins, International Scholarly Research Notices 2013, 682586 (2013).
17.
P. E. Hopkins, J. C. Duda, S. P. Clark, C. P. Hains, T. J. Rotter, L. M. Phinney, and G. Balakrishnan, Applied Physics Letters 98, 161913 (2011).
http://dx.doi.org/10.1063/1.3581041
18.
X. Zhou, R. E. Jones, J. Duda, and P. Hopkins, Physical Chemistry Chemical Physics 15, 11078 (2013).
http://dx.doi.org/10.1039/c3cp51131f
19.
J. C. Duda, T. S. English, E. S. Piekos, W. A. Soffa, L. V. Zhigilei, and P. E. Hopkins, Physical Review B 84, 193301 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.193301
20.
S. J. Dillon, M. Tang, W. C. Carter, and M. P. Harmer, Acta Materialia 55, 6208 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.07.029
21.
M. P. Harmer, Science 332, 182 (2011).
http://dx.doi.org/10.1126/science.1204204
22.
N. Goel, E. Webb III, A. Oztekin, J. Rickman, and S. Neti, Journal of Applied Physics 118, 115101 (2015).
http://dx.doi.org/10.1063/1.4931055
23.
A. Maiti, G. D. Mahan, and S. T. Pantelides, Solid State Communications 102, 517 (1997).
http://dx.doi.org/10.1016/S0038-1098(97)00049-5
24.
P. K. Schelling, S. R. Phillpot, and P. Keblinski, Physical Review B 65, 144306 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144306
25.
P. Schelling, S. Phillpot, and P. Keblinski, Journal of Applied Physics 95, 6082 (2004).
http://dx.doi.org/10.1063/1.1702100
26.
P. Jund and R. Jullien, Physical Review B 59, 13707 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.13707
27.
C. Oligschleger and J. Schön, Physical Review B 59, 4125 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.4125
28.
J. Li, L. Porter, and S. Yip, Journal of Nuclear Materials 255, 139 (1998).
http://dx.doi.org/10.1016/S0022-3115(98)00034-8
29.
S. G. Volz and G. Chen, Physical Review B 61, 2651 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.2651
30.
D. P. Sellan, E. S. Landry, J. E. Turney, A. J. H. McGaughey, and C. H. Amon, Physical Review B 81, 214305 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.214305
31.
S. Plimpton, Journal of computational physics 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
32.
L. J. Porter, J. Li, and S. Yip, Journal of Nuclear Materials 246, 53 (1997).
http://dx.doi.org/10.1016/S0022-3115(97)00035-4
33.
R. E. Jones, J. C. Duda, X. W. Zhou, C. J. Kimmer, and P. E. Hopkins, Applied Physics Letters 102, 183119 (2013).
http://dx.doi.org/10.1063/1.4804677
34.
R. J. Stevens, L. V. Zhigilei, and P. M. Norris, International Journal of Heat and Mass Transfer 50, 3977 (2007).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.01.040
35.
C.-J. Twu and J.-R. Ho, Physical Review B 67, 205422 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.205422
36.
D. L. Olmsted, S. M. Foiles, and E. A. Holm, Acta Materialia 57, 3694 (2009).
http://dx.doi.org/10.1016/j.actamat.2009.04.007
37.
P. D. Welch, IEEE Transactions on audio and electroacoustics 15, 70 (1967).
http://dx.doi.org/10.1109/TAU.1967.1161901
38.
W. H. Press, Numerical recipes 3rd edition: The art of scientific computing (Cambridge university press, 2007).
39.
R. Meyer and D. Comtesse, Physical Review B 83, 014301 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.014301
40.
D. A. Young and H. J. Maris, Physical Review B 40, 3685 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.3685
41.
J. M. Ziman, Electrons and phonons: the theory of transport phenomena in solids (Oxford University Press, 1960).
42.
J. Turney, E. Landry, A. McGaughey, and C. Amon, Physical Review B 79, 064301 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.064301
43.
M. T. Dove, Introduction to lattice dynamics (Cambridge university press, 1993), Vol.4.
44.
P. K. Schelling, S. R. Phillpot, and P. Keblinski, Applied Physics Letters 80, 2484 (2002).
http://dx.doi.org/10.1063/1.1465106
45.
Z. Tian, K. Esfarjani, J. Shiomi, A. S. Henry, and G. Chen, Applied Physics Letters 99, 053122 (2011).
http://dx.doi.org/10.1063/1.3615709
46.
G. Romano, K. Esfarjani, D. A. Strubbe, D. Broido, and A. M. Kolpak, Physical Review B 93, 035408 (2016).
http://dx.doi.org/10.1103/PhysRevB.93.035408
47.
S. Shin and M. Kaviany, Physical Review B 91, 165310 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.165310
48.
B. H. Armstrong, Thermal Conductivity of SiO2 (Pergamon Press Inc., Elmsford, NY, 1978).
49.
P. R. Cantwell, M. Tang, S. J. Dillon, J. Luo, G. S. Rohrer, and M. P. Harmer, Acta Materialia 62, 1 (2014).
http://dx.doi.org/10.1016/j.actamat.2013.07.037
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/7/10.1063/1.4955431
Loading
/content/aip/journal/adva/6/7/10.1063/1.4955431
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/7/10.1063/1.4955431
2016-07-01
2016-12-04

Abstract

The Kapitza resistance at a segregated, low-angle symmetric tilt grain boundary in -SiC is investigated using non-equilibrium molecular dynamics simulation. In particular, we assess the role of compositional and thermal disorder on the boundary resistance for various doping scenarios. By examining the local vibrational density of states, we identify a subset of modes that are significant for thermal transport in this system. This analysis is complemented by calculations of the projected density of states and a corresponding eigenmode analysis of the dynamical matrix that highlight important phonon polarizations and propagation directions. We also examine the dependence of the Kapitza resistance on temperature and dopant/matrix interaction strength, the latter parameter affecting grain-boundary structure and, hence, phonon scattering.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/7/1.4955431.html;jsessionid=VdeSBtlDAoM0SYWIjq8oMO9V.x-aip-live-02?itemId=/content/aip/journal/adva/6/7/10.1063/1.4955431&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/7/10.1063/1.4955431&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/7/10.1063/1.4955431'
Right1,Right2,Right3,