Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/7/10.1063/1.4958306
1.
M. Göppert-Mayer, Ann. Phys. 9, 273 (1931).
http://dx.doi.org/10.1002/andp.19314010303
2.
B. Dick and G. Hohlneicher, J. Chem. Phys. 76, 5755 (1982).
http://dx.doi.org/10.1063/1.442971
3.
W.J. Meath and E.A. Power, J. Phys. B 17, 763 (1984).
http://dx.doi.org/10.1088/0022-3700/17/5/017
4.
W.J. Meath, B.N. Jagatap, and A.E. Kondo, J. Phys. B 39, S605 (2006).
http://dx.doi.org/10.1088/0953-4075/39/15/S08
5.
W. J. Meath, J. Opt. Soc. Am. B 25, 865 (2008) and references therein.
http://dx.doi.org/10.1364/JOSAB.25.000865
6.
William J. Meath and B.N. Jagatap, J. Chem. Phys. 139, 144104 (2013).
http://dx.doi.org/10.1063/1.4824382
7.
I.I. Rabi, Phys. Rev. 51, 653 (1937).
http://dx.doi.org/10.1103/PhysRev.51.652
8.
M.A. Kmetic and W.J. Meath, Phys. Lett. A 108, 340 (1985).
http://dx.doi.org/10.1016/0375-9601(85)90110-0
9.
B.W. Shore, The Theory of Coherent Atomic Excitation: Simple Atoms and Fields (John Wiley, 1990), Vol. 1.
10.
M. A. Kmetic, R.A. Thuraisingham, and W. J. Meath, Phys. Rev. A 33, 1688 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.1688
11.
G. F. Thomas, Phys. Rev.A 33, 1033 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.1033
12.
F.W.J. Oliver, in Handbook of Mathematical Functions, edited by M. Abramowitz and I. Stegun (National Bureau of Standards, U.S.A, 1964), ch 9.
13.
N. Rosen and C. Zener, Phys. Rev. 40, 502 (1932).
http://dx.doi.org/10.1103/PhysRev.40.502
14.
G.F. Thomas and W. J. Meath, J. Phys. B 16, 951 (1983).
http://dx.doi.org/10.1088/0022-3700/16/6/012
15.
A. Brown, W. J. Meath, and P. Tran, Phys. Rev. A 63, 013403 (2000).
http://dx.doi.org/10.1103/PhysRevA.63.013403
16.
B. N. Jagatap and W. J. Meath, J. Chem. Phys. 113, 1501 (2000).
http://dx.doi.org/10.1063/1.481936
17.
A. Salem and W. J. Meath, Chem. Phys. 228, 115 (1998).
http://dx.doi.org/10.1016/S0301-0104(97)00323-6
18.
R.W. Boyd, Nonlinear Optics (Academic, 1992).
19.
J.I. Steinfeld, Molecular Radiation (MIT Press, 1985).
20.
M. Sargent III, M.O. Sully, and E. Lamb, Laser Physics (Addison-Wesley, 1974).
21.
M. Terauchi and T. Kobayashi, Chem. Phys. Lett. 137, 319 (1987).
http://dx.doi.org/10.1016/0009-2614(87)80892-8
22.
R. Bavli, D. F. Heller, and Y. B. Brand, Phys. Rev. A 41, 3960 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.3960
23.
A.E. Kondo and W.J. Meath, Molec. Phys. 74, 113 (1991).
http://dx.doi.org/10.1080/00268979100102101
24.
B.N. Jagatap and W.J. Meath, J. Opt. Soc. Am. B 19, 2673 (2002).
http://dx.doi.org/10.1364/JOSAB.19.002673
25.
W.M. McClain and R.A. Harris, in Excited States, edited by E.C. Lim (Academic Press, 1977).
26.
W. Denk, J.H. Strickler, and W.W. Web, Science 248, 73 (1990).
http://dx.doi.org/10.1126/science.2321027
27.
Confocal and Two-Photon Microscopy, edited by A. Diaspro (Wiley, 2002).
28.
A. Karotki, M. Khurana, J.P. Lepock, and B. C. Wilson, Photochem. Photobiol. 82, 443 (2006).
http://dx.doi.org/10.1562/2005-08-24-RA-657
29.
M.A. Kmetic and W. J. Meath, Phys. Rev. A 41, 1556 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.1556
30.
J. H. Shirley, Phys. Rev. B 138, 979 (1965).
http://dx.doi.org/10.1103/PhysRev.138.B979
31.
R. Loudon, The Quantum Theory of Light (Clarendon, 1973), pp. 90100.
32.
R.A. Thuraisingham and W.J. Meath, Molec. Phys. 56, 193 (1985).
http://dx.doi.org/10.1080/00268978500102261
33.
F. Block and A. Siegert, Phys. Rev. 57, 522 (1940).
http://dx.doi.org/10.1103/PhysRev.57.522
34.
A.E. Kondo and W.J. Meath, Molec. Phys. 92, 805 (1997).
35.
W.J. Meath and J.N. Jagatap, J. Phys. B 44, 205401 (2011).
http://dx.doi.org/10.1088/0953-4075/44/20/205401
36.
J.H. Shirley, J. Appl. Physics 34, 783 (1963).
http://dx.doi.org/10.1063/1.1729536
37.
M. Quack, Adv. Chem. Phys. 50, 395 (1982).
38.
K.B. Whaley and J. C. Light, Phys. Rev. A 29, 1188 (1984).
http://dx.doi.org/10.1103/PhysRevA.29.1188
39.
S. Nakai and W. J. Meath, J. Chem. Phys. 96, 4991 (1992).
http://dx.doi.org/10.1063/1.462742
40.
B. N. Jagatap and W. J. Meath, Chem. Phys. Lett. 258, 293 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00620-3
41.
A. Rebane, M. Drobizeh, N. Makarov, E. Beuerman, J. E. Haley, D.M. Krein, A.R. Burke, J.L. Flikkema, and T.M. Copper, J. Phys. Chem. A 115, 4255 (2011).
http://dx.doi.org/10.1021/jp200129h
42.
M.G. Vivas, D.L. Silva, J. Malinge, M. Boujtita, R. Zalesny, W. Bartkowiak, H. Agren, S. Canuto, L. De Boni, E. Ishow, and C.R. Mendonca, Scientific Reports 4, 4447 (2014).
http://dx.doi.org/10.1038/srep04447
43.
J-B. Verlhac, J. Daniel, P. Pagano, G. Clermont, and M. Blanchard-Desce, Compt. Ren. Chimie 19, 28 (2016).
http://dx.doi.org/10.1016/j.crci.2015.07.011
44.
J-F. Xing, M-L. Zheng, and X-M. Duan, Chem. Soc. Rev. 44, 5031 (2015).
http://dx.doi.org/10.1039/C5CS00278H
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/7/10.1063/1.4958306
Loading
/content/aip/journal/adva/6/7/10.1063/1.4958306
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/7/10.1063/1.4958306
2016-07-06
2016-12-08

Abstract

A model two-level dipolar molecule, and the rotating wave approximation and perturbation theory, are used to investigate the optimization and the laser intensity dependence of the two-photon excitation rate via the direct permanent dipole mechanism. The rate is proportional to the square of the laser intensity I only for small intensities and times when perturbation theory is applicable. An improvement on perturbation theory is provided by a small time RWA result for the rate which is not proportional to I2; rather it is proportional to the square of an effective intensity I. For each laser intensity the optimum RWA excitation rate as a function of time, for low intensities, is proportional to I, not I2, and for high intensities it is proportional to I. For a given two-photon transition the laser-molecule coupling optimizes for an intensity I which, for example, leads to a maximum possible excitation rate as a function of time. The validity of the RWA results of this paper, and the importance of including the effects of virtual excited states, are also discussed briefly.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/7/1.4958306.html;jsessionid=dB9PQs14BPIcHISEfYEEJzJ5.x-aip-live-06?itemId=/content/aip/journal/adva/6/7/10.1063/1.4958306&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/7/10.1063/1.4958306&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/7/10.1063/1.4958306'
Right1,Right2,Right3,