Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
D. Ielmini and R. Waser, Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications (John Wiley & Sons, 2015).
D. Jana, S. Roy, R. Panja, M. Dutta, S. Z. Rahaman, R. Mahapatra, and S. Maikap, Nanoscale Research Letters 10, 188 (2015).
F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Materials Science and Engineering R 83, 1 (2014).
T. Hasegawa, K. Terabe, T. Tsuruoka, and M. Aono, Adv. Mater. 24, 252267 (2012).
I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, Nanotechnology 22, 254003 (2011).
R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 26322663 (2009).
Y. Li, Y. Zhong, J. Zhang, L. Xu, Q. Wang, H. Sun, H. Tong, X. Cheng, and X. Miao, Scientific Reports 4, 4906 (2014).
S. L. Barbera, D. Vuillaume, and F. Alibart, ACS nano 9, 941 (2015).
M. N. Kozicki, M. Park, and M. Mitkova, IEEE Trans Nanotech. 4, 331 (2005).
D. Mahalanabis, Y. Gonzalez-Velo, H. J. Barnaby, M. N. Kozicki, P. Dandamudi, and S. Vrudhula, IEEE Trans. Electron. Dev. 61, 3723 (2014).
E. Souchier, F. D’Acapito, P. Noé, P. Blaise, M. Bernard, and V. Jousseaume, Phys. Chem. Chem. Phys. 17, 23931 (2015).
J. Hurk, S. Menzel, R. Waser†, ‡, and I. Valov, J. Phys. Chem. C 119, 18678-18685 (2015).
W. Devulder, K. Opsomer, J. Meersschaut, D. Deduytsche, M. Jurczak, L. Goux, and C. Detavernier, ACS Comb. Sci. 17, 334 (2015).
K. Ramesh, S. Asokan, K.S. Sangunni, and E.S.R. Gopal, Appl. Phys. A 69, 421 (1999).
C.J. Kim, S.G. Yoon, K. J. Choi et al., J. Vac. Sci. Tech. B 24, 721 (2006).
S.-J. Lee, S.-G. Yoon, K.-J. Choi, S.-O. Ryu, S.-M. Yoon, N.-Y. Lee, and B.-G. Yu, J. Vac. Sci. Technol. B 24, 2312 (2006).
H. Xu, L. Zhiguo, Y. Xia, L. Chen, H. Zhu, H. Guo,c, and J. Yina, Electrochem. Solid-State Lett. 14, H99 (2011).
S.-J. Choi, G.-S. Park, K.-H. Kim, S. Cho, W.-Y. Yang, X.-S. Li, J.-H. Moon, K.-J. Lee, and K. Kim, Adv. Mater. 23, 3272 (2011).
S. J. Choi, J. H. Lee, H. J. Bae, W. Y. Yang, T. W. Kim, and K. H. Kim, IEEE Electron Device Lett. 30, 120 (2009).
G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, Appl. Phys. Lett. 95, 043108 (2009).
L. Perniola et al., IEEE Electron Device Letters 31, 488 (2010).
Y. Sutou, T. Kamada, M. Sumiya, Y. Saito, and J. Koike, Acta Mater. 60, 872 (2012).
Y. Saito, Y. Sutou, and J. Koike, J. Phys. Chem. C 118, 26973 (2014).
L. Xu, Y. Li, N. N. Yu, Y. P. Zhong, and X. S. Miao, Appl. Phys. Lett. 106, 031904 (2015).
P. Kumar, R. Chander, T.S. Sathiaraj, and R. Thangaraj, Mat. Sci. Semi. Proc. 38, 188 (2015).
B. Prasai, M. E. Kordesch, D. A. Drabold, and G. Chen, Phys. Status Solidi B 250, 1785 (2013).
P. Kumar, R. Chander, T.S. Sathiaraj, and R. Thangaraj, Materials Science in Semiconductor Processing 38, 188 (2015).
S. Larentis, F. Nardi, F., S. Balatti, D. C. Gilmer, and D. Ielmini, IEEE Trans. Electron Devices 59, 2468 (2012).
E. Linn, R. Rosezin, C. Kugeler, and R. Waser, Nat. Mater. 9, 403 (2010).
Y. C. Bae, A. R. Lee, J. B. Lee, J. H. Koo, K. C. Kwon, J. G. Park, H. S. Im, and J. P. Hong, Adv. Funct. Mater. 22, 709–716 (2012).
Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, Nature Communications 5, 4232 (2014).
X. Tian, S. Yang, M. Zeng, L. Wang, J. Wei, Z. Xu, W. Wang, and X. Bai, Adv. Mater. 26, 3649 (2014).
F. Zhuge, K. Li, B. Fu, H. Zhang, J. Li, H. Chen, L. Liang, J. Gao, H. Cao, Z. Liu, and H. Luo, AIP Advances 5, 057125 (2015).
S. Menzel and R. Waser, Phys. Status Solidi RRL 8(6), 540544 (2014).

Data & Media loading...


Article metrics loading...



We report on the direct observation of Ag filament growth and a peculiar resistance switching in amorphous GeTe films with a lateral electrode geometry. The Ag filament growth was monitored by in-situ optical microscopy. The resistance switching was studied in three electrode pairs, Ag–Ag, Pt–Ag, and Pt–Ag/Pt (Ag electrode covered with Pt). In all the three electrode pairs, similar dendritic Ag filaments were clearly observed growing along both directions from one electrode to the other, according to the applied bias polarity. However, the SET and RESET processes are quite different. The Ag-Ag pair produces a unipolar clockwise switching. The Pt–Ag pair shows a bipolar counter-clockwise switching, as predicted in the basic electrochemical metallization theory, but the observed switching polarity is exactly opposite to the basic theory prediction. The Pt–Ag/Pt pair produces a unipolar counter-clockwise switching. The peculiar SET/RESET processes are explained on the basis of strong Ag diffusion into GeTe matrix resulting in an asymmetric effective electrode pair. The findings suggest that the SET/RESET processes are controlled by the amount of Ag and the electrode geometry.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd