Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
V. G. Veselago and P. N. Lebedev, Sov. Phys. Usp. 10, 509 (1968).
N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, Science 323, 366 (2009).
H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, Appl. Phys. Lett. 95, 094107 (2009).
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microw. Theory Techn. 47, 2075 (1999).
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, Phys. Rev. B 78, 241103 (2008).
R. Alaee, C. Menzel, C. Rockstuhl, and F. Lederer, Opt. Express 20, 18370 (2012).
H. F. Alvarez, M. E. D. Gomez, and F. Las-Heras, Materials 8, 1590 (2015).
R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, Opt. Lett. 38, 4988 (2013).
H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, J. Appl. Phys. 110, 014909 (2011).
H. Xiong, L. L. Zhong, C. M. Luo, and J. S. Hong, AIP Advances 5, 067162 (2015).
Y. Z. Cheng, Y. Wang, Y. Nie, R. Z. Gong, X. Xiong, and X. Wang, J. Appl. Phys. 111, 044902 (2012).
Y. Shen, Z. B. Pei, Y. Q. Pang, J. F. Wang, A. X. Zhang, and S. B. Qu, J. Appl. Phys. 117, 224503 (2015).
Y. Wen, W. Ma, J. Bailey, G. Matmon, and X. Yu, IEEE Trans. THz Sci. Techn. 5, 406 (2015).
M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, Appl. Phys. Lett. 104, 041103 (2014).
L. Li, Y. Yang, and C. Liang, J. Appl. Phys. 110, 063702 (2011).
H. Q. Zhai, C. H. Zhan, L. Liu, and C. H. Liang, J. Electromagn. Waves App. 29, 774 (2015).
K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, IEEE Photon. Techn. Lett. 27, 1539 (2015).
W. C. Li, X. Zhou, Y. Ying, X. J. Qiao, F. X. Qin, Q. Li, and S. L. Che, AIP Advances 5, 067151 (2015).
R. Singh, I. A. I. Al-Naib, M. Koch, and W. L. Zhang, Opt. Express 18, 13044 (2010).
Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, Opt. Commun. 350, 63 (2015).
D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, Phys. Rev. E 71, 036617 (2005).
H. X. Xu, G. M. Wang, M. Q. Qi, J. G. Liang, J. Q. Gong, and Z. M. Xu, Phys. Rev. B 86, 205104 (2012).
X. P. Shen, T. J. Cui, J. M. Zhao, H. F. Ma, W. X. Jiang, and H. Li, Opt. Express 19, 9401 (2011).
J. Liu, Q. Zhou, Y. Shi, X. Zhao, and C. Zhang, Appl. Phys. Lett. 103, 241911 (2013).

Data & Media loading...


Article metrics loading...



In this study, the design, realization, and characterization of an ultrathin triple-band polarization-insensitive wide-angle metamaterial absorber are reported. The metamaterial absorber comprises a periodic array of modified six-fold symmetric snowflake-shaped resonators with strip spiral line load, which is printed on a dielectric substrate backed by a metal ground plane. It is shown that the absorber exhibits three distinct near-unity absorption peaks, which are distributed across C, X, Ku bands, respectively. Owing to the six-fold symmetry, the absorber is insensitive to the polarization of the incident radiation. In addition, the absorber shows excellent absorption performance over wide oblique incident angles for both transverse electric and transverse magnetic polarizations. Simulated surface current and field distributions at the three absorption peaks are demonstrated to understand the absorption mechanism. Particularly, the absorption modes come from the fundamental and high-order dipole resonances. Furthermore, the experimental verification of the designed absorber is conducted, and the measured results are in reasonable agreement with the simulated ones. The proposed ultrathin (∼0.018λ, λ corresponding to the lowest peak absorption frequency) compact (0.168λ×0.168λ corresponding to the area of a unit cell) absorber enables potential applications such as stealth technology, electromagnetic interference and spectrum identification.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd