Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/7/10.1063/1.4958875
1.
Physics of Quantum Rings, edited by Vladimir M. Fomin (Springer, Berlin, 2014).
2.
G. Huang, W. Guo, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, Appl. Phys. Lett. 94, 101115 (2009).
http://dx.doi.org/10.1063/1.3100407
3.
Jiang Wu, Zhenhua Li, Dali Shao, M. O. Manasreh, Vasyl P. Kunets, Zhiming M. Wang, Gregory J. Salamo, and B. D. Weaver, Appl. Phys. Lett. 94, 171102 (2009).
http://dx.doi.org/10.1063/1.3126644
4.
H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, J. Appl. Phys. 105, 034504 (2009).
http://dx.doi.org/10.1063/1.3075836
5.
S. Bhowmick, G. Huang, W. Guo, C. S. Lee, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, Appl. Phys. Lett. 96, 231103 (2010).
http://dx.doi.org/10.1063/1.3447364
6.
Jiang Wu, Dali Shao, Zhenhua Li, M. O. Manasreh, Vasyl P. Kunets, Zhiming M. Wang, and G. J. Salamo, Appl. Phys. Lett. 95, 071908 (2009).
http://dx.doi.org/10.1063/1.3211971
7.
Jiang Wu, Zhiming M. Wang, Vitaliy G. Dorogan, Shibin Li, Zhihua Zhou, Handong Li, Jihoon Lee, Eun Soo Kim, Yuriy I. Mazur, and Gregory J. Salamo, Appl. Phys. Lett. 101, 043904 (2012).
http://dx.doi.org/10.1063/1.4738996
8.
Yu. I. Mazur, V. Lopes-Oliveira, L. D. de Souza, V. Lopez-Richard, M. D. Teodoro, V. G. Dorogan, M. Benamara, J. Wu, G. G. Tarasov, E. Marega, Jr., Z. M. Wang, G. E. Marques, and G. J. Salamo, J. Appl. Phys. 117, 154307 (2015).
http://dx.doi.org/10.1063/1.4918544
9.
Ferran Suárez, Daniel Granados, María Luisa Dotor, and Jorge M. García, Nanotechnology 15, S126 (2004).
http://dx.doi.org/10.1088/0957-4484/15/4/003
10.
E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, D. Sanvitto, H. P. van der Meulen, J. M. Calleja, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcá, and P. A. Postigo, J. Opt. Soc. Am. B 27, A21 (2010).
http://dx.doi.org/10.1364/JOSAB.27.000A21
11.
B. C. Lee, O. Voskoboynikov, and C. P. Lee, Physica E 24, 87 (2004).
http://dx.doi.org/10.1016/j.physe.2004.04.030
12.
Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
http://dx.doi.org/10.1103/PhysRev.115.485
13.
Andrea M. Fischer, Vivaldo L. Campo, Jr., Mikhail E. Portnoi, and Rudolf A. Römer, Phys. Rev. Lett. 102, 096405 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.096405
14.
E. Räsänen, A. Mühle, M. Aichinger, and R. J. Haug, Phys. Rev. B 84, 165320 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165320
15.
Elżbieta Zipper, Marcin Kurpas, Janusz Sadowski, and Maciej M. Maśka, J. Phys.: Condens. Matter 23, 115302 (2011).
http://dx.doi.org/10.1088/0953-8984/23/11/115302
16.
I. Filikhin, S. Matinyan, J. Nimmo, and B. Vlahovic, Physica E 43, 1669 (2011).
http://dx.doi.org/10.1016/j.physe.2011.05.020
17.
J. Simonin, C. R. Proetto, M. Pacheco, and Z. Barticevic, Phys. Rev. B 89, 075304 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.075304
18.
J. M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, Appl. Phys. Lett. 71, 2014 (1997).
http://dx.doi.org/10.1063/1.119772
19.
Axel Lorke, R. Johannes Luyken, Alexander O. Govorov, Jörg P. Kotthaus, J. M. García, and P. M. Petroff, Phys. Rev. Lett. 84, 2223 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2223
20.
J. Planelles, W. Jaskólski, and J. I. Aliaga, Phys. Rev. B 65, 033306 (2001).
http://dx.doi.org/10.1103/PhysRevB.65.033306
21.
O. Voskoboynikov, Y. Li, H.-M. Lu, C.-F. Shih, and C. P. Lee, Phys. Rev. B 66, 155306 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.155306
22.
M. Bayer, M. Korkusinski, P. Hawrylak, T. Gutbrod, M. Michel, and A. Forchel, Phys. Rev. Lett. 90, 186801 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.186801
23.
J. Cui, Q. He, X. M. Jiang, Y. L. Fan, X. J. Yang, F. Xue, and Z. M. Jianga, Appl. Phys. Lett. 83, 2907 (2003).
http://dx.doi.org/10.1063/1.1616992
24.
J. I. Climente, J. Planelles, and J. L. Movilla, Phys. Rev. B 70, 081301(R) (2004).
http://dx.doi.org/10.1103/PhysRevB.70.081301
25.
P. Offermans, P. M. Koenraad, J. H. Wolter, D. Granados, J. M. García, V. M. Fomin, V. N. Gladilin, and J. T. Devreese, Appl. Phys. Lett. 87, 131902 (2005).
http://dx.doi.org/10.1063/1.2058212
26.
T. Kuroda, T. Mano, T. Ochiai, S. Sanguinetti, K. Sakoda, G. Kido, and N. Koguchi, Phys. Rev. B 72, 205302 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205301
27.
I. Filikhin, V. M. Suslov, and B. Vlahovic, Phys. Rev. B 73, 205332 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.205332
28.
M. Grochol, F. Grosse, and R. Zimmermann, Phys. Rev. B 74, 115416 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.115416
29.
Fei Dinga, Lijuan Wang, Suwit Kiravittaya, Elisabeth Müller, Armando Rastelli, and Oliver G. Schmidt, Appl. Phys. Lett. 90, 173104 (2007).
http://dx.doi.org/10.1063/1.2731528
30.
N. A. J. M. Kleemans, I. M. A. Bominaar-Silkens, V. M. Fomin, V. N. Gladilin, D. Granados, A. G. Taboada, J. M. García, P. Offermans, U. Zeitler, P. C. M. Christianen, J. C. Maan, J. T. Devreese, and P. M. Koenraad, Phys. Rev. Lett. 99, 146808 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.146808
31.
V. M. Fomin, V. N. Gladilin, S. N. Klimin, J. T Devreese, N. A. J. M. Kleemans, and P. M. Koenraad, Phys. Rev. B 76, 235320 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.235320
32.
V. M. Fomin, V. N. Gladilin, J. T Devreese, N. A. J. M. Kleemans, M Bozkurt, and P. M. Koenraad, Phys. Stat. Sol. B 245, 2657 (2008).
http://dx.doi.org/10.1002/pssb.200879817
33.
T.-C. Lin, C.-H. Lin, H.-S. Ling, Y.-J. Fu, W.-H. Chang, S.-D. Lin, and C.-P. Lee, Phys. Rev. B 80, 081304(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.80.081304
34.
M Tadić, N. Ćukarić, V. Arsoski, and F. M. Peeters, Phys. Rev. B 84, 125307 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.125307
35.
S. Sanguinetti, S. Bietti, N. Koguchi, and C. Somaschini, Nanotechnol. 22, 185602 (2011).
http://dx.doi.org/10.1088/0957-4484/22/18/185602
36.
L. M. Thu, W. T. Chiu, and O. Voskoboynikov, Phys. Rev. B 85, 205419 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.205419
37.
H. D. Kim, K. Kyhm, R. A. Taylor, G. Nogues, K. C. Je, E. H. Lee, and J. D. Song, Appl. Phys. Lett. 102, 033112 (2013).
http://dx.doi.org/10.1063/1.4789519
38.
Hee Dae Kim, Rin Okuyama, Kwangseuk Kyhm, Mikio Eto, Robert A. Taylor, Aurelien L. Nicolet, Marek Potemski, Gilles Nogues, Le Si Dang, Ku-Chul Je, Jongsu Kim, Ji-Hoon Kyhm, Kyu Hyoek Yoen, Eun Hye Lee, Jun Young Kim, Il Ki Han, Wonjun Choi, and Jindong Song, Nano Lett. 16, 27 (2016).
http://dx.doi.org/10.1021/acs.nanolett.5b02419
39.
D. Gridin, A. T. I. Adamou, and R. V. Craster, Phys. Rev. B 69, 155317 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.155317
40.
J. A. Barker, R. J. Warburton, and E. P. OReilly, Phys. Rev. B 69, 035327 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.035327
41.
L. G. G. V. Dias da Silva 1, S. E. Ulloa, and A. O. Govorov, Phys. Rev. B 70, 155318 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.155318
42.
A. Bruno-Alfonso and A. Latgé, Phys. Rev. B 71, 125312 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.125312
43.
A. Chaves, J. Costa e Silva, J.A.K. Freire, and G.A. Farias, Microelectronics Jour. 39, 455 (2008).
http://dx.doi.org/10.1016/j.mejo.2007.07.019
44.
M. D. Teodoro, V. L. Campo, Jr., V. Lopez-Richard, E. Marega, Jr., G. E. Marques, Y. Galvaõ Gobato, F. Iikawa, M. J. S. P. Brasil, Z.Y. AbuWaar, V. G. Dorogan, Yu. I. Mazur, M. Benamara, and G. J. Salamo, Phys. Rev. Lett. 104, 086401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.086401
45.
M. D. Teodoro, A. Malachias, V. Lopes-Oliveira, D. F. Cesar, V. Lopez-Richard, G. E. Marques, E. Marega, Jr., M. Benamara, Yu. I. Mazur, and G. J. Salamo, J. App. Phys. 112, 014319 (2012).
http://dx.doi.org/10.1063/1.4733964
46.
V. V. Arsoski, M. Ž. Tadíc,1, and F. M. Peeters, Phys. Rev. B 87, 085314 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.085314
47.
O. Voskoboynikov, W. T. Chiu, and L. M. Thu, Phys. Rev. B 88, 085310 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.085310
48.
Rubén E. Acosta, A. L. Morales, C. M. Duque, M. E. Mora-Ramos, and C. A. Duque, Phys. Stat. Sol. B 253, 744 (2016).
http://dx.doi.org/10.1002/pssb.201552514
49.
J. M. Llorens, C. Trallero-Giner, A. García-Cristóbal, and A. Cantarero, Phys. Rev. B 64, 035309 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.035309
50.
L. A. Lavenére-Wanderley, A. Bruno-Alfonso, and A. Latgé, J. Phys.: Condens. Matter 14, 259 (2002).
http://dx.doi.org/10.1088/0953-8984/14/2/312
51.
A. V. Maslov and D. S. Citrin, Phys. Rev. B 67, 121304(R) (2003).
http://dx.doi.org/10.1103/PhysRevB.67.121304
52.
W. Lei, C. Notthoff, A. Lorke, D. Reuter, and A. D. Wieck, Appl. Phys. Lett. 96, 033111 (2010).
http://dx.doi.org/10.1063/1.3293445
53.
F. Ding, N. Akopian, B. Li, U. Perinetti, A. Govorov, F. M. Peeters, C. C. Bof Bufon, C. Deneke, Y. H. Chen, A. Rastelli, O. G. Schmidt, and V. Zwiller, Phys. Rev. B 82, 075309 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.075309
54.
B. Li and F. M. Peeters, Phys. Rev. B 83, 115448 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115448
55.
A. M. Alexeev and M. E. Portnoi, Phys. Rev. B 85, 245419 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.245419
56.
N. Walck and R.L. Reinecke, Phys. Rev. B 57, 9088 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.9088
57.
O. Voskoboynikov and C. P. Lee, Physica E 20, 278 (2004).
http://dx.doi.org/10.1016/j.physe.2003.08.018
58.
M. Korkusinski, P. Hawrylyak, M. Bayer, G. Ortner, A. Forchnel, S. Farad, and Z. Wasilewski, Physica E 13, 610 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00198-4
59.
G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Edition de Physique, Ulis, 1990).
60.
T. K. Rebane, Zh. Eksp. Teor. Fiz. 38, 963 (1960)
[T. K. Rebane, Sov. Phys. JETP 11, 694 (1960)].
61.
A. I. Ivanov and O. R. Lobanova, Physica E 23, 61 (2004).
http://dx.doi.org/10.1016/j.physe.2004.01.010
62.
O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B 59, 5688 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.5688
63.
I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
http://dx.doi.org/10.1063/1.1368156
64.
C. E. Pryor and M. -E. Pistol, Phys. Rev. B 72, 205311 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205311
65.
Y. Li, J. L. Liu, O. Voskoboynikov, C. P. Lee, and S. M. Sze, Comp. Phys. Comm. 140, 399 (2001).
http://dx.doi.org/10.1016/S0010-4655(01)00291-0
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/7/10.1063/1.4958875
Loading
/content/aip/journal/adva/6/7/10.1063/1.4958875
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/7/10.1063/1.4958875
2016-07-11
2016-12-08

Abstract

We theoretically investigate suppression and recovery of the Aharonov-Bohm oscillations of the diamagnetic response of electrons (holes) confined in self-assembled InGaAs/GaAs semiconductor reflection asymmetrical quantum rings. Based on the mapping method and gauge-origin-independent definition for the magnetic vector potential we simulate the energies and wave functions of the electron (hole) under external magnetic and electric fields. We examine the transformation of the ground state wave function of the electron (hole) in reflection asymmetrical rings from localized in one of the potential valleys (dotlike shape of the wave function) to distributed over all volume of the ring (ringlike shape) under an appropriate lateral electric field. This transformation greatly recovers the electron (hole) diamagnetic coefficient and Aharonov-Bohm oscillations of the diamagnetic response of the ring. However, the recovering electric field for the first Aharonov-Bohm diamagnetic oscillation of the electron is a suppressing one for the hole (and vice versa). This can block the recovery of the optical Aharonow-Bohm effect in InGaAs/GaAs asymmetrically wobbled rings. However, the recovery of the Aharonov-Bohm oscillations for the independent electron (hole) by the external electric field remains interesting and feasible objective for the asymmetric rings.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/7/1.4958875.html;jsessionid=SrweJR-5Qb0PYS2sTvinDuB_.x-aip-live-06?itemId=/content/aip/journal/adva/6/7/10.1063/1.4958875&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/7/10.1063/1.4958875&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/7/10.1063/1.4958875'
Right1,Right2,Right3,