Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/7/10.1063/1.4958876
1.
M. Mendillo and J. Forbes, Journal of Geophysical Research 83, 151 (1978).
http://dx.doi.org/10.1029/JA083iA01p00151
2.
P. Bernhardt, J. Ballenthin, J. Baumgardner, A. Bhatt, I. Boyd, J. Burt, R. Caton, A. Coster, P. Erickson, and J. Huba, Plasma Science, IEEE Transactions on 40, 1267 (2012).
http://dx.doi.org/10.1109/TPS.2012.2185814
3.
A. A. Howling, L. Sansonnens, J.-L. Dorier, and C. Hollenstein, Journal of Physics D: Applied Physics 26, 1003 (1993).
http://dx.doi.org/10.1088/0022-3727/26/6/019
4.
S. J. Choi and M. J. Kushner, Journal of applied physics 74, 853 (1993).
http://dx.doi.org/10.1063/1.354877
5.
U. Fantz, P. Franzen, W. Kraus, M. Berger, S. Christ-Koch, M. Fröschle, R. Gutser, B. Heinemann, C. Martens, P. McNeely et al., Plasma Physics and Controlled Fusion 49, B563 (2007).
http://dx.doi.org/10.1088/0741-3335/49/12B/S53
6.
W. Scales, P. Bernhardt, and G. Ganguli, Journal of geophysical research 99, 373 (1994).
http://dx.doi.org/10.1029/93JA02752
7.
W. Scales, P. Bernhardt, and G. Ganguli, Journal of geophysical research 100, 269 (1995).
http://dx.doi.org/10.1029/94JA02490
8.
A. Wong, D. Mamas, and D. Arnush, Physics of Fluids (1958-1988) 18, 1489 (1975).
http://dx.doi.org/10.1063/1.861034
9.
S. H. Kim, R. L. Merlino, J. K. Meyer, and M. Rosenberg, Journal of Plasma Physics 79, 1107-1111 (2013).
http://dx.doi.org/10.1017/S0022377813001074
10.
T. An, R. L. Merlino, and N. DAngelo, Physics of Fluids B: Plasma Physics (1989-1993) 5, 1917 (1993).
http://dx.doi.org/10.1063/1.860775
11.
R. Ichiki, S. Yoshimura, T. Watanabe, Y. Nakamura, and Y. Kawai, Physics of Plasmas (1994-present) 9, 4481 (2002).
http://dx.doi.org/10.1063/1.1515770
12.
S.-H. Kim, J. Heinrich, and R. Merlino, Planetary and Space Science 56, 1552 (2008).
http://dx.doi.org/10.1016/j.pss.2008.07.020
13.
N. D’Angelo, S. v. Goeler, and T. Ohe, Physics of Fluids (1958-1988) 9, 1605 (1966).
http://dx.doi.org/10.1063/1.1761904
14.
H. Romero, G. Ganguli, Y. Lee, and P. Palmadesso, Physics of Fluids B: Plasma Physics 4, 1708 (1992).
http://dx.doi.org/10.1063/1.860028
15.
H. Romero and G. Ganguli, Physics of Fluids B: Plasma Physics 5, 3163 (1993).
http://dx.doi.org/10.1063/1.860653
16.
H. Romero, G. Ganguli, and Y. Lee, Physical review letters 69, 3503 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.3503
17.
R. Ichiki, S. Yoshimura, T. Watanabe, Y. Nakamura, and Y. Kawai, Physics of Plasmas (1994-present) 9, 4481 (2002).
http://dx.doi.org/10.1063/1.1515770
18.
M. Rosenberg and R. Merlino, Journal of Plasma Physics 75, 495 (2009).
http://dx.doi.org/10.1017/S0022377808007642
19.
M. Rosenberg and R. Merlino, Journal of Plasma Physics 79, 949 (2013).
http://dx.doi.org/10.1017/S0022377813000858
20.
Y. Liu, J. Cao, L. Xu, X. Zhang, P. Wang, J. Wang, Y. Du, and Z. Zheng, Journal of Geophysical Research: Space Physics (2014).
21.
Y. Liu, J. Cao, L. Xu, X. Zhang, P. Wang, J. Wang, Y. Du, and Z. Zheng, Geophysical Research Letters 1413 (2014).
http://dx.doi.org/10.1002/2014GL059211
22.
R. Stenzel, Journal of Geophysical Research: Space Physics (1978–2012) 104, 14379 (1999).
http://dx.doi.org/10.1029/1998JA900120
23.
W. Amatucci, D. D. Blackwell, E. M. Tejero, C. D. Cothran, L. Rudakov, G. I. Ganguli, and D. N. Walker, Plasma Science, IEEE Transactions on 39, 637 (2011).
http://dx.doi.org/10.1109/TPS.2010.2096235
24.
Y. Liu, J. Cao, J. Wang, Z. Zheng, L. Xu, and Y. Du, Physics of Plasmas 19, 092901 (2012).
http://dx.doi.org/10.1063/1.4754697
25.
A. M. DuBois, “Laboratory Investigation of the Dynamics of Shear Flows in a Plasma Boundary Layer,” Ph.D. thesis, Auburn University, 2013.
26.
E. M. Tejero, W. Amatucci, G. Ganguli, C. Cothran, C. Crabtree, and E. Thomas, Jr., Physical review letters 106, 185001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.185001
27.
A. Hussain, Journal of Fluid Mechanics 173, 125 (1986).
http://dx.doi.org/10.1017/S0022112086001192
28.
W. Daughton, Physics of Plasmas (1994-present) 10, 3103 (2003).
http://dx.doi.org/10.1063/1.1594724
29.
G. Ganguli, L. Rudakov, W. Scales, J. Wang, and M. Mithaiwala, Physics of Plasmas (1994-present) 17, 052310 (2010).
http://dx.doi.org/10.1063/1.3420245
30.
Y. Istomin and T. Leyser, Physics of Plasmas 8, 4577 (2001).
http://dx.doi.org/10.1063/1.1399325
31.
P. Bernhardt, C. Siefring, P. Rodriguez, D. Haas, M. Baumback, H. Romero, D. Solin, F. Djuth, L. Duncan, and D. Hunton, Journal of geophysical research 100, 17331 (1995).
http://dx.doi.org/10.1029/94JA01887
32.
P. Bernhardt, P. Rodriguez, C. Siefring, and C. Lin, Journal of Geophysical Research: Space Physics (1978–2012) 96, 13887 (1991).
http://dx.doi.org/10.1029/91JA01424
33.
H. Romero, G. Ganguli, P. Palmadesso, and P. B. Dusenbery, Geophysical Research Letters 17, 2313 (1990).
http://dx.doi.org/10.1029/GL017i013p02313
34.
W. Scales, P. Bernhardt, G. Ganguli, C. Siefring, and P. Rodriguez, Geophysical research letters 21, 605 (1994).
http://dx.doi.org/10.1029/94GL00369
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/7/10.1063/1.4958876
Loading
/content/aip/journal/adva/6/7/10.1063/1.4958876
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/7/10.1063/1.4958876
2016-07-11
2016-12-11

Abstract

In this study, laboratory observations of the perturbations of the magnetic field are reported due to the injection of attachment chemicals ( , , and ) into argon plasmas. Besides the well-known electron density reduction, we also observed magnetic field perturbation in the experiment. The measured induced voltage , which is taken as a proxy of the time-changing electromagnetic field, fluctuates in the boundary layer between the ambient plasmas and negative ions plasmas. Perturbations of the magnetic field were investigated by changing the ambient pressure and ratio of attachment chemicals. The measured keeps increasing in these lower pressures; but it no longer increases as the ambient pressure higher than a threshold, e.g., for , , and , the transition pressure is 6Pa, 5Pa and 4Pa, respectively. The magnitude of the increase with the change of the ratio of release flow until at higher ratios, e.g., 40%. We transformed these time-sampled data into the frequency domain and found coherent modes with fundamental frequencies lying in the lower hybrid range. In addition, these coherent frequencies show a frequency drift with the increase of the contents of the negative ions. These modes were suggested as the magnetic component of electron-ion hybrid mode. This work has an important application in the study of artificially-created ionospheric depletion which is usually generated by releasing of attachment chemicals in the upper atmosphere.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/7/1.4958876.html;jsessionid=__BuAhErEye-JJn70JK9zS_F.x-aip-live-06?itemId=/content/aip/journal/adva/6/7/10.1063/1.4958876&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/7/10.1063/1.4958876&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/7/10.1063/1.4958876'
Right1,Right2,Right3,