Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. Tonouchi, Nat. Photon. 1, 97 (2007).
M. Rahm, J.-S. Li, and W. J. Padilla, J. Infrared Milli. & Terah. Waves 34, 1 (2013).
J. Federici and L. Moeller, J. Appl. Phys. 107, 111101 (2010).
H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444, 597 (2006).
F. Fan, S. Chen, W. H. Gu, X. H. Wang, and S. J. Chang, Appl. Phys. Lett. 105, 151110 (2014).
Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, and Z. Chen, Nano Lett. 15, 3501 (2015).
N. Zhang, Y. Zhang, and Y.-J. Xu, Nanoscale 4, 5792 (2012).
R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora, Nanoscale 3, 20 (2011).
T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, Appl. Phys. Lett. 99, 102109 (2011).
P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, ACS nano 6, 9118 (2012).
Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, Sci.Rep. 4, 7409 (2014).
Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, Nat. Commun. 6, 7082 (2015).
T. Cheiwchanchamnangij and W. R. Lambrecht, Phys. Rev. B 85, 205302 (2012).
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotech. 8, 497 (2013).
C. J. Docherty, P. Parkinson, H. J. Joyce, M.-H. Chiu, C.-H. Chen, M.-Y. Lee, L.-J. Li, L. M. Herz, and M. B. Johnston, ACS nano 8, 11147 (2014).
S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, Nanoscale 8, 4713 (2016).
Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, Sci Rep. 6, 22899 (2016).
L. K. Tan, B. Liu, J. H. Teng, S. Guo, H. Y. Low, and K. P. Loh, Nanoscale 6, 10584 (2014).
Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, and L. J. Li, Adv. Mater. 24, 2320 (2012).
F. Fan, X. Zhang, S. Li, D. Deng, N. Wang, H. Zhang, and S. Chang, Opt. Exp. 23, 27204 (2015).

Data & Media loading...


Article metrics loading...



An optically pumped terahertz (THz) modulator based on a MoS-Si heterostructure metasurface are fabricated and investigated in this paper. The THz wave modulation in MoS metasurface has been demonstrated by THz time domain spectroscopy experiment and numerical simulation, which can reach over 90% under the continuous wave laser pumping of 4W/cm2 power density. Importantly, the catalysis of photocarrier generation in MoS-Si heterostructure has been proved by the comparsion between the modulation depth of metasurface with and without MoS nanosheet under the same pumping power, and we found that the strcuture of metasurface and polariztion direction can also influence the photocarrier density in MoS metasurface. This novel THz modulator based on 2D material has a high effective modulation on THz waves under a low pumping power, which has a bright potential in THz applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd