Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
L. O. Chua, IEEE Trans. Circuit Theory 18, 705 (1971).
J. P. Strachan, D. B. Strukov, J. Borghetti, J. J. Yang, G. Medeiro-Ribeiro, and R. S. Williams, Nanotechnology 22, 254015 (2011).
J. C. Scott and L. D. Bozano, Adv. Mater. 19, 1452 (2007).
T. Lee and Y. Chen, MRS Bulletin 27, 144 (2012).
F. Zhuge, S. Peng, C. He, X. Zhu, X. Chen, Y. Liu, and R. Li, Nanotechnology 22, 275204 (2011).
Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Nano Lett. 9, 1636 (2009).
J. Jang, F. Pan, K. Braam, and V. Subramanian, Adv. Mater. 24, 3573 (2012).
K. Terabe, T. Nakayama, T. Hasegawa, and M. Aono, Appl. Phys. Lett. 80, 4009 (2002).
J. Jang, K. Cho, S. H. Lee, and S. Kim, Mat. Lett. 62, 1438 (2008).
A. N. Goldstein, Appl. Phys. A 62, 33 (1996).
J. Jang, K. Cho, S. H. Lee, and S. Kim, Nanotechnology 19, 015204 (2008).
J. Jang, K. Cho, K. Byun, W. S. Hong, and S. Kim, Jpn. J. Appl. Phys. 49, 030210 (2010).
J. Jang, K. Cho, J. Yun, and S. Kim, Microelectronic Engineering 86, 2030 (2009).
R. J. Bandaranayake, G. W. Wen, J. Y. Lin, H. X. Jiang, and C. M. Sorensen, Appl. Phys. Lett. 67, 831 (1995).
R. S. Sharma and Y. A. Chang, Bull. Alloy Phase Diagrams 7, 263 (1986).
R. Waser and M. Aono, Nat. Mater. 3, 833 (2007).
Z. Jin, G. Liu, and Z. Wang, J. Mater. Chem. C 1, 3282 (2013).
K. Kao and W. Hwang, in Electrical Transport in Solids (Pergamon Press, Oxford, 1981), Ch. 2-5.
F. Jiang, Q. Tian, M. Tang, Z. Chen, J. Yang, and J. Hu, CrystEngComm. 13, 7189 (2011).

Data & Media loading...


Article metrics loading...



In this study, Ag S nanoparticles are synthesized and used as the active material for two-terminal resistance switching memory devices. Sintered Ag S films are successfully crystallized on plastic substrates with synthesized Ag S nanoparticles, after a relatively low-temperature sintering process (200 °C). After the sintering process, the crystallite size is increased from 6.8 nm to 80.3 nm. The high ratio of surface atoms to inner atoms of nanoparticles reduces the melting point temperature, deciding the sintering process temperature. In order to investigate the resistance switching characteristics, metal/AgS/metal structures are fabricated and tested. The effect of the electrode material on the non-volatile resistive memory characteristics is studied. The bottom electrochemically inert materials, such as Au and Pt, were critical for maintaining stable memory characteristics. By using Au and Pt inert bottom electrodes, we are able to significantly improve the memory endurance and retention to more than 103 cycles and 104 sec, respectively.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd