Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/7/10.1063/1.4959005
1.
A. S. Birks and R. E. Green, Nondestructive testing handbook (American Society for Nondestructive Testing, Columbus, OH, 1991), Vol. 7.
2.
Y. P. Zheng, R. G. Maev, and I. Y. Solodov, Can. J. Phys. 77, 927 (2000).
http://dx.doi.org/10.1139/p99-059
3.
K. Y. Jhang, Int. J. Precis. Eng. Man. 10, 123 (2009).
http://dx.doi.org/10.1007/s12541-009-0019-y
4.
K. H. Matlack, J. Y. Kim, L. J. Jacobs, and J. M. Qu, J. Nondestruct. Eval. 34, 1 (2015).
http://dx.doi.org/10.1007/s10921-014-0273-5
5.
V. K. Chillara and C. J. Lissenden, Opt. Eng. 55, 011002 (2016).
http://dx.doi.org/10.1117/1.OE.55.1.011002
6.
M. X. Deng, J. Appl. Phys. 84, 3500 (1998).
http://dx.doi.org/10.1063/1.368525
7.
M. X. Deng, J. Appl. Phys. 85, 3051 (1999).
http://dx.doi.org/10.1063/1.369642
8.
W. J. N. de Lima and M. F. Hamilton, J. Sound Vib. 265, 819 (2003).
http://dx.doi.org/10.1016/S0022-460X(02)01260-9
9.
M. F. Müller, J. Y. Kim, J. M. Qu, and L. J. Jacobs, J. Acoust. Soc. Am. 127, 2141 (2010).
http://dx.doi.org/10.1121/1.3294714
10.
W. J. N. de Lima and M. F. Hamilton, Wave Motion 41, 1 (2005).
http://dx.doi.org/10.1016/j.wavemoti.2004.05.004
11.
V. K. Chillara and C. J. Lissenden, Ultrasonics 53, 862 (2013).
http://dx.doi.org/10.1016/j.ultras.2012.12.007
12.
Y. Liu, V. K. Chillara, and C. J. Lissenden, J. Sound Vib. 332, 4517 (2013).
http://dx.doi.org/10.1016/j.jsv.2013.03.021
13.
Y. Liu, V. K. Chillara, C. J. Lissenden, and J. L. Rose, J. Appl. Phys. 114, 114908 (2013).
http://dx.doi.org/10.1063/1.4821252
14.
Y. Liu, C. J. Lissenden, and J. L. Rose, J. Appl. Phys. 115, 214901 (2014).
http://dx.doi.org/10.1063/1.4879459
15.
Y. Liu, C. J. Lissenden, and J. L. Rose, J. Appl. Phys. 115, 214902 (2014).
http://dx.doi.org/10.1063/1.4879460
16.
M. X. Deng, P. Wang, and X. F. Lv, J. Phys. D: Appl. Phys. 38, 344 (2005).
http://dx.doi.org/10.1088/0022-3727/38/2/020
17.
C. Bermes, J. Y. Kim, J. M. Qu, and L. J. Jacobs, Appl. Phys. Lett. 90, 021901 (2007).
http://dx.doi.org/10.1063/1.2431467
18.
C. Bermes, J. Y. Kim, J. M. Qu, and L. J. Jacobs, Mech. Syst. Signal Pr. 22, 638 (2008).
http://dx.doi.org/10.1016/j.ymssp.2007.09.006
19.
Y. X. Xiang, M. X. Deng, F. Z. Xuan, and C. J. Liu, J. Appl. Phys. 111, 104905 (2012).
http://dx.doi.org/10.1063/1.4720071
20.
M. X. Deng and J. F. Pei, Appl. Phys. Lett. 90, 121902 (2007).
http://dx.doi.org/10.1063/1.2714333
21.
C. Pruell, J. Y. Kim, J. M. Qu, and L. J. Jacobs, Smart Mater. Struct. 18, 035003 (2009).
http://dx.doi.org/10.1088/0964-1726/18/3/035003
22.
W. B. Li, Y. Cho, and J. D. Achenbach, Smart Mater. Struct. 21, 085019 (2012).
http://dx.doi.org/10.1088/0964-1726/21/8/085019
23.
C. Pruell, J. Y. Kim, J. M. Qu, and L. J. Jacobs, Appl. Phys. Lett. 91, 231911 (2007).
http://dx.doi.org/10.1063/1.2811954
24.
C. Pruell, J. Y. Kim, J. M. Qu, and L. J. Jacobs, NDT & E Int. 42, 199 (2009).
http://dx.doi.org/10.1016/j.ndteint.2008.09.009
25.
Y. X. Xiang, M. X. Deng, F. Z. Xuan, and C. J. Liu, NDT & E Int. 44, 768 (2011).
http://dx.doi.org/10.1016/j.ndteint.2011.08.005
26.
Y. X. Xiang, M. X. Deng, F. Z. Xuan, and C. J. Liu, Ultrasonics 51, 974 (2011).
http://dx.doi.org/10.1016/j.ultras.2011.05.013
27.
W. Li and Y. Cho, Exp. Mech. 54, 1309 (2014).
http://dx.doi.org/10.1007/s11340-014-9882-2
28.
C. Nucera and F. L. di Scalea, Math. Probl. Eng. 2012, 16 pages (2012).
http://dx.doi.org/10.1155/2012/365630
29.
C. Nucera and F. L. di Scalea, J. Eng. Mech. 140, 502 (2014).
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000670
30.
C. Nucera and F. L. di Scalea, J. Acoust. Soc. Am. 136, 2561 (2014).
http://dx.doi.org/10.1121/1.4896463
31.
K. F. Graff, Wave motion in elastic solids (Courier Corporation, 2012).
32.
L. Gavrić, J. Sound Vib. 185, 531 (1995).
http://dx.doi.org/10.1006/jsvi.1995.0398
33.
B. A. Auld, Acoustic fields and waves in solids (R. E. Krieger, 1990), Vol. 2.
34.
T. Hayashi, W. J. Song, and J. L. Rose, Ultrasonics 41, 175 (2003).
http://dx.doi.org/10.1016/S0041-624X(03)00097-0
35.
T. Hayashi, C. Tamayama, and M. Murase, Ultrasonics 44, 17 (2006).
http://dx.doi.org/10.1016/j.ultras.2005.06.006
36.
M. V. Predoi, M. Castaings, B. Hosten, and C. Bacon, J. Acoust. Soc. Am. 121, 1935 (2007).
http://dx.doi.org/10.1121/1.2534256
37.
Z. Fan and M. J. S. Lowe, P. Roy. Soc. A-Math. Phy. 465, 2053 (2009).
http://dx.doi.org/10.1098/rspa.2009.0010
38.
COMSOL, User’s Guide and Introduction (Version 4.4 by COMSOL MULTIPHYSICS, http://www.comsol.com/, most recently viewed 20th December 2015).
39.
Y. X. Xiang, M. X. Deng, and F. Z. Xuan, J. Appl. Phys. 106, 024902 (2009).
http://dx.doi.org/10.1063/1.3171942
40.
N. Matsuda and S. Biwa, J. Nondestruct. Eval. 33, 169 (2014).
http://dx.doi.org/10.1007/s10921-014-0227-y
41.
B. Pavlakovic, D. Alleyne, M. J. S. Lowe, and P. Cawley, in Review of Progress in Quantitative Nondestructive Evaluation, edited by D. Thompson and D. Chimenti (Springer, 1998), Vol. 17, pp. 10031010.
42.
W. B. Fraser, Int. J. Solids Struct. 5, 379 (1969).
http://dx.doi.org/10.1016/0020-7683(69)90020-1
43.
M. X. Deng, Y. X. Xiang, and L. B. Liu, J. Appl. Phys. 109, 113525 (2011).
http://dx.doi.org/10.1063/1.3592672
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/7/10.1063/1.4959005
Loading
/content/aip/journal/adva/6/7/10.1063/1.4959005
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/7/10.1063/1.4959005
2016-07-13
2016-12-10

Abstract

Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonant frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/7/1.4959005.html;jsessionid=r2vZ8PSRQbxe3n_eWHvky9gN.x-aip-live-06?itemId=/content/aip/journal/adva/6/7/10.1063/1.4959005&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/7/10.1063/1.4959005&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/7/10.1063/1.4959005'
Right1,Right2,Right3,