Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/7/10.1063/1.4959022
1.
J. Koplik and J. R. Banavar, Annual Review of Fluid Mechanics 27, 257 (1995).
http://dx.doi.org/10.1146/annurev.fl.27.010195.001353
2.
H. Chih-Ming and T. Yu-Chong, Journal of Fluids Engineering - Transactions of ASME 118, 437 (1996).
http://dx.doi.org/10.1115/1.2817778
3.
H. Chih-Ming and T. Yu-Chong, Annual Review of Fluid Mechanics 30, 579 (1998).
http://dx.doi.org/10.1146/annurev.fluid.30.1.579
4.
G.-e.-H. Mohamed, Journal of Fluids Engineering - Transactions of ASME 121, 5 (1999).
http://dx.doi.org/10.1115/1.2822013
5.
B.-Y. Cao, J. Sun, M. Chen, and Z.-Y. Guo, International Journal of Molecular Sciences 10, 4638 (2009).
http://dx.doi.org/10.3390/ijms10114638
6.
R. Daw and J. Finkelstein, Nature 442, 367 (2006).
http://dx.doi.org/10.1038/442367a
7.
H. Craighead, Nature 442, 387 (2006).
http://dx.doi.org/10.1038/nature05061
8.
L. Bocquet and P. Tabeling, Lab Chip 14, 3143 (2014).
http://dx.doi.org/10.1039/C4LC00325J
9.
D. R. Reyes, D. Iossifidis, P.-A. Auroux, and A. Manz, Analytical Chemistry 74, 2623 (2002).
http://dx.doi.org/10.1021/ac0202435
10.
M. L. Kovarik, D. M. Ornoff, A. T. Melvin, N. C. Dobes, Y. Wang, A. J. Dickinson, P. C. Gach, P. K. Shah, and N. L. Allbritton, Analytical Chemistry 85, 451 (2013).
http://dx.doi.org/10.1021/ac3031543
11.
C. T. Culbertson, T. G. Mickleburgh, S. A. Stewart-James, K. A. Sellens, and M. Pressnall, Analytical Chemistry 86, 95 (2014).
http://dx.doi.org/10.1021/ac403688g
12.
P. A. Thompson and S. M. Troian, Nature 389, 360 (1997).
http://dx.doi.org/10.1038/39475
13.
P. A. Thompson and M. O. Robbins, Physical Review A 41, 6830 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.6830
14.
J. Koplik, J. R. Banavar, and J. F. Willemsen, Physics of Fluids A 1, 781 (1989).
http://dx.doi.org/10.1063/1.857376
15.
D. L. Morris, L. Hannon, and A. L. Garcia, Physical Review A 46, 5279 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.5279
16.
F. D. Sofos, T. E. Karakasidis, and A. Liakopoulos, Physical Review E 79, 026305 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.026305
17.
Y. Chen, C. Zhang, M. Shi, and G. P. Peterson, Applied Physics Letters 100, 074102 (2012).
http://dx.doi.org/10.1063/1.3685490
18.
B. Y. Cao, M. Chen, and Z. Y. Guo, Applied Physics Letters 86, 091905 (2005).
http://dx.doi.org/10.1063/1.1871363
19.
A. S. Berman, Journal of Applied Physics 24, 1232 (1953).
http://dx.doi.org/10.1063/1.1721476
20.
A. S. Berman, Journal of Applied Physics 27, 1557 (1956).
http://dx.doi.org/10.1063/1.1722307
21.
C. Lee, C. Cottin-Bizonne, A.-L. Biance, P. Joseph, L. Bocquet, and C. Ybert, Physical Review Letter 112, 244501 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.244501
22.
K. H. Jensen, A. X. C. N. Valente, and H. A. Stone, Physics of Fluids 826, 052004 (2014).
http://dx.doi.org/10.1063/1.4876937
23.
D. S. Beavers and D. D. Joseph, Journal of Fluid Mechanics 30, 197 (1967).
http://dx.doi.org/10.1017/S0022112067001375
24.
J.-T. Jeong, Physics of Fluids 13, 1884 (2001).
http://dx.doi.org/10.1063/1.1373680
25.
T. K. Vanderlick and H. T. Davis, Journal of Chemical Physics 87, 1791 (1987).
http://dx.doi.org/10.1063/1.453191
26.
S. A. Somers and H. T. Davis, Journal of Chemical Physics 96, 5389 (1992).
http://dx.doi.org/10.1063/1.462724
27.
K. S. Page and P. A. Monson, Physical Review E 54, R29 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.R29
28.
H. Zhang, B. J. Zhang, J. W. Lu, and S. Q. Liang, Chemical Physics Letters 366, 24 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)01509-9
29.
D. Kim and E. Darve, Physical Review E 73, 051203 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.051203
30.
H. Hoang and G. Galliero, Physical Review E 86, 021202 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.021202
31.
G. Z. Ramon, H. E. Huppert, J. R. Lister, and H. A. Stone, Physics of Fluids 25, 073103 (2013).
http://dx.doi.org/10.1063/1.4812832
32.
S.C.Yang, Microfluid Nanofluid 2, 501 (2006).
http://dx.doi.org/10.1007/s10404-006-0096-5
33.
B.-Y. Cao, M. Chen, and Z.-Y. Guo, International Journal of Engineering Science 44, 927 (2006).
http://dx.doi.org/10.1016/j.ijengsci.2006.06.005
34.
B. Y. Cao, Molecular Physics 105, 1403 (2007).
http://dx.doi.org/10.1080/00268970701361322
35.
J. Sun, Y. L. He, W. Q. Tao, J. W. Rose, and H. S. Wang, Microfluid Nanofluid 12, 991 (2012).
http://dx.doi.org/10.1007/s10404-012-0933-7
36.
E. M. Sparrow, G. S. Beavers, and B. A. Masha, Physics of Fluids 17, 1465 (1974).
http://dx.doi.org/10.1063/1.1694915
37.
G. A. Bird, Ann. Rev. Fluid Mech. 10, 11 (1978).
http://dx.doi.org/10.1146/annurev.fl.10.010178.000303
38.
G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994).
39.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
40.
E. Meiburg, Physics of Fluids 29, 3107 (1986).
http://dx.doi.org/10.1063/1.865961
41.
T. Li and W. Ye, Commun. Comput. Phys. 15, 246 (2014).
42.
M. Barisik and A. Beskok, Microfluid Nanofluid 11, 269 (2011).
http://dx.doi.org/10.1007/s10404-011-0794-5
43.
G. S. Grest and K. Kremer, Physical Review A 33, 3628 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.3628
44.
P. A. Thompson and M. O. Robbins, Physical Review Letter 63, 766 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.766
45.
I. J.H. and K. J.G., J. Chem. Phys. 18, 817829 (1950).
http://dx.doi.org/10.1063/1.1747782
46.
J. Sun, Y. He, W. Tao, X. Yin, and H. Wang, Int. J. Numer. Meth. Engng. 89, 2 (2012).
http://dx.doi.org/10.1002/nme.3229
47.
S. Kang and Y. K. Suh, Microfluid Nanofluid 7, 337 (2009).
http://dx.doi.org/10.1007/s10404-008-0384-3
48.
A. Liakopoulos, F. Sofos, and T. E. Karakasidis, Microfluid Nanofluid 20, 24 (2016).
http://dx.doi.org/10.1007/s10404-015-1699-5
49.
N. Tretyakov and M. M, Soft Matter 9, 3613 (2013).
http://dx.doi.org/10.1039/c3sm27440c
50.
V. P. Sokhan and N. Quirke, Physical Review E 78, 015301 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.015301
51.
G. Finger, J. Kapat, and A. Bhattacharya, Journal of Fluids Engineering -Transations ASME 129, 31 (2007).
http://dx.doi.org/10.1115/1.2375128
52.
B.-Y. Cao, J.-F. Xie, and S. S. Sazhin, Journal of Chemical Physics 134 (2011).
53.
W.-L. Li, J.-W. Lin, S.-C. Lee, and M.-D. Chen, Journal of Micromechanics and Microengineering 12, 149 (2002).
http://dx.doi.org/10.1088/0960-1317/12/2/308
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/7/10.1063/1.4959022
Loading
/content/aip/journal/adva/6/7/10.1063/1.4959022
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/7/10.1063/1.4959022
2016-07-13
2016-09-29

Abstract

The nanochannel flow past permeable walls with nanopores is investigated by molecular dynamics (MD) simulations, including the density distribution, velocity field, molecular penetration mechanism and surface friction coefficient. A low density distribution has been found at the gas-wall interface demonstrating the low pressure region. In addition, there exists a jump of the gas density on the permeable surface, which indicates the discontinuity of the density distribution across the permeable surface. On the other hand, the nanoscale vortices are observed in nanopores of the permeable wall, and the reduced mass flux of the flow in nanopores results in a shifted hydrodynamic boundary above the permeable surface. Particularly the slip length of the gas flow on the permeable surface is pronounced a non-linear function of the molecular mean free path, which produces a large value of the tangential momentum accommodation coefficient (TMAC) and a big portion of the diffusive refection. Moreover, the gas-gas interaction and multi-collision among gas molecules may take place in nanopores, which contribute to large values of TMAC. Consequently the boundary friction coefficient on the permeable surface is increased because of the energy dissipation consumed by the nanoscale vortices in nanopores. The molecular boundary condition provides us with a new picture of the nanochannel flow past the permeable wall with nanopores.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/7/1.4959022.html;jsessionid=xGuKiYd9k2VEHErGLOAOK8mZ.x-aip-live-02?itemId=/content/aip/journal/adva/6/7/10.1063/1.4959022&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/7/10.1063/1.4959022&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/7/10.1063/1.4959022'
Right1,Right2,Right3,