Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, J. Phys. D: Appl. Phys. 43, 354002 (2010).
J. Piprek, Phys. Stat. Solidi 207(10), 2217 (2010).
A. David and N. F. Gardner, Appl. Phys. Lett. 97, 193508 (2010).
J. Cho, E. F. Schubert, and J. K. Kim, Las. Phot. Rev. 7(3), 408 (2013).
M. R. Krames, O. B. Scheking, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, J. Disp. Tech. 3(2), 160 (2007).
B. Galler, M. Sabathil, A. Laubsch, T. Meyer, L. Hoeppel, G. Kraeuter, H. Lugauer, M. Strassburg, M. Peter, A. Biebersdorf, U. Steegmueller, and B. Hahn, Phys. Status Solidi C 8(7-8), 2369 (2011).
R. Charash, P. P. Maaskant, L. Lewis, C. McAleese, M. J. Kappers, C. J. Humphreys, and B. Corbett, Appl. Phys. Lett. 95, 151103 (2009).
O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilseneck, J. Appl. Phys. 85, 3222 (1999).
V. Fiorentini, F. Bernardini, and O. Ambacher, Appl. Phys. Lett. 80, 1204 (2002).
G. B. Lin, D. Y. Kim, Q. Shan, J. Cho, E. F. Schubert, H. Shim, C. Sone, and J. K. Kim, IEEE Photonics Journal 5(4), 1600207 (2013).
M. J. Wallace, P. R. Edwards, M. J. Kappers, M. A. Hopkins, F. Oehler, S. Sivaraya, R. A. Oliver, C. J. Humphreys, D. W. E. Allsopp, and R. W. Martin, J. Appl. Phys. 117, 115705 (2015).
G.K. Reeves, Solid-State Electron. 23, 487 (1980).
L. Lewis, P. P. Maaskant, and B. Corbett, Semicond. Sci. Technol. 21, 1738 (2006).
T. E. Sale, J. Woodhead, G. J. Rees, R. Grey, J. P. R. David, A. S. Pabla, P. J. Rodriguez-Gíronés, P. N. Robson, R. A. Hogg, and M. S. Skolnick, J. Appl. Phys. 76, 5447 (1994).
M. Leroux, N. Grandjean, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, Phys. Rev. B 60, 1496 (1999).
P. Kivisaari, J. Oksanen, and J. Tulkki, J. Appl. Phys. 111, 103120 (2012).
T. Akasaka, H. Gotoh, T. Saito, and T. Makimoto, Appl. Phys. Lett. 85, 3089 (2004).
M. A. Reshchikov, D. O. Demchenko, A. Usikov, H. Helava, and Yu. Makarov, Phys. Rev. B 90, 235203 (2014).
D. Zhu, J. Xu, A.N. Noemaun, J.K. Kim, E.F. Schubert, M.H. Crawford, and D.D. Koleske, Appl. Phys. Lett. 94, 081113 (2009).
M.A. der Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, and A. Di Carlo, Appl. Phys. Lett. 105, 133504 (2014).
C. L. Reynolds, Jr. and A, Patel, J. Appl. Phys. 103, 086102 (2008).
X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, IEEE Elec. Dev. 23, 535 (2002).
Z. Hu, K. Nomoto, B. Song, M. Zhu, M. Qi, M. Pan, X. Gao, V. Protasenko, D. Jena, and H. G. Xing, Appl. Phys. Lett. 107, 243501 (2015).
M. Binder, B. Galler, M. Furitsch, J. Off, J. Wagner, R. Zeisel, and S. Katz, Appl. Phys. Lett. 103, 221110 (2013).
J. M. Lee and S. B. Kim, IEEE Trans. Elec. Dev. 58, 3053 (2011).
D. S. Meyaard, J. Cho, E. F. Schubert, S. H. Han, M. H. Kim, and C. Sone, Appl. Phys. Lett. 103, 121103 (2013).
J. J. Wierer, Jr., D. D. Koleske, and S. R. Lee, Appl. Phys. Lett. 100, 111119 (2012).
J. R. Lang, N. G. Young, R. M. Farrell, Y.-R. Wu, and J. S. Speck, Appl. Phys. Lett. 101, 181105 (2012).
H. Masui, S. Nakamura, and S. P. DenBaars, Appl. Phys. Lett. 96, 073509 (2010).
See supplementary material at for details about yellow band emission and correspondences between the photocurrent and the increase in light emission.[Supplementary Material]

Data & Media loading...


Article metrics loading...



We present a comprehensive study of the emission spectra and electrical characteristics of InGaN/GaN multi-quantum well light-emitting diode (LED) structures under resonant optical pumping and varying electrical bias. A 5 quantum well LED with a thin well (1.5 nm) and a relatively thick barrier (6.6 nm) shows strong bias-dependent properties in the emission spectra, poor photovoltaic carrier escape under forward bias and an increase in effective resistance when compared with a 10 quantum well LED with a thin (4 nm) barrier. These properties are due to a strong piezoelectric field in the well and associated reduced field in the thicker barrier. We compare the voltage ideality factors for the LEDs under electrical injection, light emission with current, photovoltaic mode (PV) and photoluminescence (PL) emission. The PV and PL methods provide similar values for the ideality which are lower than for the resistance-limited electrical method. Under optical pumping the presence of an n-type InGaN underlayer in a commercial LED sample is shown to act as a second photovoltaic source reducing the photovoltage and the extracted ideality factor to less than 1. The use of photovoltaic measurements together with bias-dependent spectrally resolved luminescence is a powerful method to provide valuable insights into the dynamics of GaN LEDs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd