Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
D. T. Morelli, G. P. Meisner, B. Chen, S. Hu, and C. Uher, “Cerium Filling and Doping of Cobalt Triantimonide,” Phys. Rev. B 56, 7376 (1997).
B. C. Sales, D. Mandrus, and R. K. Williams, “Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials,” Science 272(5266), 1325 (1996).
G. A. Slack, in CRC Handbook of Thermoelectrics, edited by D. M. Rowe (CRC Press, Boca Raton, 1995).
Hang Chi, Hyoungchul Kim, John C. Thomas, Xianli Su, Stephen Stackhouse, Massoud Kaviany, Anton Van der Ven, Xinfeng Tang, and Ctirad Uher, “Configuring pnicogen rings in skutterudites for low phonon conductivity,” Phys. Rev. B 86, 195209 (2012).
Mogens Christensen, Asger B. Abrahamsen, Niels B. Christensen, Fanni Juranyi, Niels H. Andersen, Kim Lefmann, Jakob Andreasson, Christian R. H. Bahl, and Bo B. Iversen, “Avoided crossing of rattler modes in thermoelectric materials,” Nature Mater. 7, 811 (2008).
Cronin B. Vining, Nature Mater. Thermoelectrics: Half-full glasses 7, 765766 (2008).
Wu Li and Natalio Mingo, “Thermal conductivity of fully filled skutterudites: Role of the filler,” Phys. Rev. B 89, 184304 (2014).
G. S. Nolas, D. T. Morelli, and T. M. Tritt, “SKUTTERUDITES: A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications,” Annu. Rev. Mater. Sci. 29, 89 (1999).
S. V. Dordevic, N. R. Dilley, E. D. Bauer, D. N. Basov, M. B. Maple, and L. Degiorgi, “Optical properties of MFe4P12 filled skutterudites,” Phys. Rev. B 60, 11321 (1999).
V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature (London) 395, 876 (1998).
Raphaël P. Hermann, Rongying Jin, Werner Schweika, Fernande Grandjean, David Mandrus, Brian C. Sales, and Gary J. Long, “Einstein Oscillators in Thallium Filled Antimony Skutterudites,” Phys. Rev. Lett. 90, 135505 (2003).
L. X. Li, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373 (2001).
N. Ogita, R. Kojima, T. Hasegawa, Y. Takasu, M. Udagawa, T. Kondo, N. Takeda, T. Ikeno, K. Ishikawa, H. Sugawara, D. Kikuchi, H. Sato, C. Sekine, and I. Shirotani, “Raman scattering study of filled skutterudite compounds,” J. Phys. Cond. Mater 92, 012123 (2007).
Gary J. Long, Raphaël P. Hermann, Fernande Grandjean, Ercan E. Alp, Wolfgang Sturhahn, Charles E. Johnson, Dennis E. Brown, Olaf Leupold, and Rudolf Rüffer, “Strongly decoupled europium and iron vibrational modes in filled skutterudites,” Phys. Rev. B (R) 71, 140302 (2005).
K K Raut, A Bali, and R C Mallik, AIP Conference Proceedings 1447, 855 (2012).
M. M. Koza, M. R. Johnson, R. Viennois, H. Mutka, L. Girard, and D. Ravot, “Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites,” Nat. Mater. 7, 805 (2008).
N. Bernstein, J. L. Feldman, and D. J. Singh, “Calculations of dynamical properties of skutterudites: Thermal conductivity, thermal expansivity, and atomic mean-square displacement,” Phys. Rev. B 81, 134301 (2010).
B. L. Huang and M. Kaviany, “Filler-reduced phonon conductivity of thermoelectric skutterudites: Ab initio calculations and molecular dynamics simulations,” Acta Mater. 58, 4516 (2010).
L. Guo, X. Xu, J. R. Salvador, and G. P. Meisner, “Coupled vibrational modes in multiple-filled skutterudites and the effects on lattice thermal conductivity reduction,” Appl. Phys. Lett. 102, 111905 (2013).
Xun Shi, Jiong Yang, James R. Salvador, Miaofang Chi, Jung Y. Cho, Hsin Wang, Shengqiang Bai, Jihui Yang, Wenqing Zhang, and Lidong Chen, “Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports,” J. Ame. Chem. Soc 133, 7837 (2011).
Wei-Shu Liu, Bo-Ping Zhang, Li-Dong Zhao, and Jing-Feng Li, “Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb,” Chem. Mater. 20, 75267531 (2008).
Jianying Dong, Kun Yang, Bo Xu, Long Zhang, Qian Zhang, and Yongjun Tian, “Structure and thermoelectric properties of Se- and Se/Te-doped CoSb3 skutterudites synthesized by high-pressure technique,” Journal of Alloys and Compounds 647, 295-302 (2015).
Tao Liang, Xianli Su, Yonggao Yan, Gang Zheng, Qiang Zhang, Hang Chi, Xinfeng Tang, and Ctirad Uher, “Ultra-fast synthesis and thermoelectric properties of Te doped skutterudites,” J. Mater. Chem. A 2, 17914 (2014).
Chenglong Xu, Bo Duan, Shijie Ding, Pengcheng Zhai, and Qingjie Zhang, “Thermoelectric Properties of Skutterudites Co4−xNixSb11.9−yTeySe0.1,,” Journal of Electronic Materials 43(6), 2224-2228 (2014).
Bo Duan, Pengcheng Zhai, Lisheng Liu, Qingjie Zhang, and Xuefeng Ruan, “Beneficial effect of Se substitution on thermoelectric properties of Co4Sb11.9−xTexSe0.1 skutterudites,” Journal of Solid State Chemistry 193, 8-12 (2012).
Xianli Su, Han Li, Yonggao Yan, Guoyu Wang, Hang Chi, Xiaoyuan Zhou, Xinfeng Tang, Qingjie Zhang, and Ctirad Uher, “Microstructure and thermoelectric properties of CoSb2.75Ge0.25−xTex prepared by rapid solidification,” Acta Materialia 60(8), 3536-3544 (2012).
XianLi Su, Han Li, QuanSheng Guo, Xinfeng Tang, Qingjie Zhang, and Ctirad Uher, “Structure and Thermoelectric Properties of Te and Ge-Doped Skutterudites CoSb2.875−xGe0.125Tex,” Journal of Electronic Materials 40(5), 1286-1291 (2011).
M.-J. Kim and I.-H. Kim, “Electronic transport properties of Te-doped CoSb3 skutterudites prepared by hot pressing,” Metals and Materials International 16(3), 459-463 (2010).
M. Battabyal, B. Priyadarshini, D. Sivaprahasam, N. Karthiselva, and R. Gopalan, “The effect of Cu2O nanoparticle dispersion on the thermoelectric properties of n-type skutterudites,” J. Phys. D: Appl. Phys. 48, 455309 (2015).
R. Anbalagan, Gerda Rogl, Michael Zehetbauer, Amit Sharma, Peter Rogl, Satyam Suwas, and Ramesh Chandra Mallik, “Effect of High-Pressure Torsion on Texture, Microstructure, and Raman Spectroscopy: Case Study of Fe and Te-Substituted CoSb3,” J. Electron. Mater. 43(10), 3817-3823 (2014).
G. Rogl, L. Zhang, P. Rogl, A. Grytsiv, M. Falmbigl, D. Rajs, M. Kriegisch, H. Müller, E. Bauer, J. Koppensteiner, W. Schranz, M. Zehetbauer, Z. Henkie, and M. B. Maple, “Thermal expansion of skutterudites,” J. Appl. Phys. 107, 043507 (2010).
Prashanta K. Ojha, S. K. Rath, T. K. Chongdar, and A. R. Kulkarni, “Nanocrystalline yttria stabilized zirconia by metal–PVA complexation,” Ceramic International 36, 561 (2010).
Eric S. Toberer, Alex Zevalkink, and G. Jeffrey Snyder, “Phonon engineering through crystal chemistry,” J. Mater. Chem. 21, 15843 (2011).
J. L. Feldman and D. J. Singh, “Lattice dynamics of skutterudites: First-principles and model calculations for CoSb3,” Phys. Rev. B 53, 6273 (1996).
Yaguo Wang, Xianfan Xu, and Jihui wang, “Resonant Oscillation of Misch-Metal Atoms in Filled Skutterudites,” Phys. Rev. Lett. 102, 175508 (2009).
J. Callaway, “Model for Lattice Thermal Conductivity at Low Temperatures,” Phys. Rev. 113, 1046 (1959).
R. O. Pohl, “Thermal conductivity and phonon resonance scattering,” Phys. Rev. Lett. 8, 481 (1962).

Data & Media loading...


Article metrics loading...



We report a significant reduction in the lattice thermal conductivity of the CoSb skuttertudites, doped with chalcogen atoms. Te/Se chalcogen atoms doped CoSb skutterudite samples (TeCoSb, SeCoSb, TeSeCoSb) are processed by ball milling and spark plasma sintering. X-ray diffraction data combined with energy dispersive X-ray spectra indicate the doping of Te/Se chalcogen atoms in the skutterudite. The temperature dependent X-ray diffraction confirms the stability of the Te/Se doped CoSb skutterudite phase and absence of any secondary phase in the temperature range starting from 300 K to 773 K. The Raman spectroscopy reveals that different chalcogen dopant atoms cause different resonant optical vibrational modes between the dopant atom and the host CoSb skutterudite lattice. These optical vibrational modes do scatter heat carrying acoustic phonons in a different spectral range. It was found that among the Te/Se chalcogen atoms, Te atoms alter the host CoSb skutterudite lattice vibrations to a larger extent than Se atoms, and can potentially scatter more Sb related acoustic phonons. The Debye model of lattice thermal conductivity confirms that the resonant phonon scattering has important contributions to the reduction of lattice thermal conductivity in CoSb skutterudites doped with Te/Se chalcogen atoms. Lattice thermal conductivity ∼ 0.9 W/mK at 773 K is achieved in TeCoSb skutterudites, which is the lowest value reported so far in CoSb skutterudites, doped with single Te chalcogen atom.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd