Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/7/10.1063/1.4959196
1.
C. T. Chen, R. A. Fine, and F. J. Millero, “Equation of State of Pure Water Determined from Sound Speeds,” Journal of Chemical Physics 66, 2142-2144 (1977).
http://dx.doi.org/10.1063/1.434179
2.
S. Wiryana, L. J. Slutsky, and J. M. Brown, “The equation of state of water to 200 degrees C and 3.5 GPa: model potentials and the experimental pressure scale,” Earth and Planetary Science Letters 163, 123-130 (Nov 1998).
http://dx.doi.org/10.1016/S0012-821X(98)00180-0
3.
R. T. Beyer, “Parameter of Nonlinearity in Fluids,” Journal of the Acoustical Society of America 32, 719-721 (1960).
http://dx.doi.org/10.1121/1.1908195
4.
A. B. Coppens, R. T. Beyer, M. B. Seiden, J. Donohue, F. Guepin, R. H. Hodson et al., “Parameter of Nonlinearity in Fluids .2.,” Journal of the Acoustical Society of America 38, 797-804 (1965).
http://dx.doi.org/10.1121/1.1909806
5.
L. Bjorno, “Characterization of Biological Media by Means of Their Nonlinearity,” Ultrasonics 24, 254-259 (Sep 1986).
http://dx.doi.org/10.1016/0041-624X(86)90102-2
6.
F. Dunn, W. K. Law, and L. A. Frizzel, “Nonlinear ultrasonic wave propagation in biological media,” IEEE Ultrasonic Symposium Proceedings (1981).
7.
W. K. Law, L. A. Frizzell, and F. Dunn, “Determination of the Nonlinearity Parameter B/A of Biological Media,” Ultrasound in Medicine and Biology 11, 307-318 (1985).
http://dx.doi.org/10.1016/0301-5629(85)90130-9
8.
F. Prieur, S. P. Nasholm, A. Austeng, F. Tichy, and S. Holm, “Feasibility of Second Harmonic Imaging in Active Sonar: Measurements and Simulations,” IEEE Journal of Oceanic Engineering 37, 467-477 (Jul 2012).
http://dx.doi.org/10.1109/JOE.2012.2198933
9.
K. D. Wallace, C. W. Lloyd, M. R. Holland, and J. G. Miller, “Finite amplitude measurements of the nonlinear parameter B/A for liquid mixtures spanning a range relevant to tissue harmonic mode,” Ultrasound in Medicine and Biology 33, 620-629 (Apr 2007).
http://dx.doi.org/10.1016/j.ultrasmedbio.2006.10.008
10.
W. K. Law, L. A. Frizzell, and F. Dunn, “Comparison of Thermodynamic and Finite-Amplitude Methods of B/A Measurement in Biological-Materials,” Journal of the Acoustical Society of America 74, 1295-1297 (1983).
http://dx.doi.org/10.1121/1.390047
11.
C. Pantea, C. F. Osterhoudt, and D. N. Sinha, “Determination of acoustical nonlinear parameter beta of water using the finite amplitude method,” Ultrasonics 53, 1012-1019 (Jul 2013).
http://dx.doi.org/10.1016/j.ultras.2013.01.008
12.
J. R. Davies, J. Tapson, and B. J. P. Mortimer, “A novel phase locked cavity resonator for B/A measurements in fluids,” Ultrasonics 38, 284-291 (Mar 2000).
http://dx.doi.org/10.1016/S0041-624X(99)00139-0
13.
E. C. Everbach and R. E. Apfel, “An interferometric technique for B/A measurement,” Journal of the Acoustical Society of America 98, 3428-3438 (Dec 1995).
http://dx.doi.org/10.1121/1.413794
14.
Hagelber Mp, G. Holton, and S. Kao, “Calculation of B/A for Water from Measurements of Ultrasonic Velocity Versus Temperature and Pressure to 10000 Kg/Cm2,” Journal of the Acoustical Society of America 41, 564-567 (1967).
http://dx.doi.org/10.1121/1.1910380
15.
F. Plantier, J. L. Daridon, and B. Lagourette, “Measurement of the B/A nonlinearity parameter under high pressure: Application to water,” Journal of the Acoustical Society of America 111, 707-715, Feb 2002.
http://dx.doi.org/10.1121/1.1432978
16.
Z. Zhu, M. S. Roos, W. N. Cobb, and K. Jensen, “Determination of the Acoustic Nonlinearity Parameter B/A from Phase Measurements,” Journal of the Acoustical Society of America 74, 1518-1521 (1983).
http://dx.doi.org/10.1121/1.390154
17.
J. W. Tester, B. J. Anderson, A. S. Batchelor, D. D. Blackwell, R. D. E. M. Drake, J. Garnish et al., The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century (Massachusetts Institute of Technology, 2006).
18.
D. N. Sinha and G. Kaduchak, “Noninvasive determination of sound speed and attenuation in liquids,” in Experimental Methods in the Physical Sciences, edited by H. E. B. Moises Levy and S. Richard (Academic Press, 2001), Vol. 39, pp. 307-333.
19.
L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, 4th ed. (2000).
20.
B. T. Sturtevant, C. Pantea, and D. N. Sinha, “An Acoustic Resonance Measurement Cell for Liquid Property Determinations up to 250°C,” Rev. Sci. Instrum. 83, 115106 (2012).
http://dx.doi.org/10.1063/1.4765746
21.
J. F. Shackelford and W. Alexander, “Thermal Properties of Materials,” in Materials Science and Engineering Handbook (CRC Press, Boca Raton, FL, 2001).
22.
W. Wagner and H.-J. Kretzschmar, International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, 2nd ed. (Springer-Verlag, Berlin, 2008).
23.
W. Wagner and A. Pruss, “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” Journal of Physical and Chemical Reference Data 31, 387-535, June 2002.
http://dx.doi.org/10.1063/1.1461829
24.
The reader should be aware of a typographical error in Eqn. 5 of Ref. 3 where an extra ρ is included in the denominator of the B/A” term. Reference 4 also mentions this.
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/7/10.1063/1.4959196
Loading
/content/aip/journal/adva/6/7/10.1063/1.4959196
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/7/10.1063/1.4959196
2016-07-15
2016-10-01

Abstract

Sound speed in liquid water at temperatures between 275 and 523 K and pressures up to 14 MPa were experimentally determined using a high temperature/high pressure capable acoustic resonance cell. The measurements enabled the determination of the temperature and pressure dependence of sound speed and thus the parameter of acoustic nonlinearly, /, over this entire - space. Most of the sound speeds measured in this work were found to be within 0.4% of the IAPWS-IF97 formulation, an international standard for calculating sound speed in water as a function of temperature and pressure. The values for / determined at laboratory ambient pressure and at temperatures up to 356 K, were found to be in general agreement with values calculated from the IAPWS-IF97 formulation. Additionally, / at 293 K was found to be 4.6, in agreement with established literature values.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/7/1.4959196.html;jsessionid=7JKwGIkFGXYxmCLlnto3RLU9.x-aip-live-06?itemId=/content/aip/journal/adva/6/7/10.1063/1.4959196&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/7/10.1063/1.4959196&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/7/10.1063/1.4959196'
Right1,Right2,Right3,