Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. Bazzan and M. Fontana, Appl. Phys. Rev. 2, 040501 (2015).
C. R. Bowen, H. A. Kim, P. M. Weaver, and S. Dunn, Energy Environ. Sci. 7, 25 (2014).
Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, Science 284, 1822 (1999).
D. Janner, D. Tulli, M. Garcia-Granda, M. Belmonte, and V. Pruneri, Laser Photon. Rev. 3, 301 (2009).
S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, Rev. Sci. Instrum. 81, 103110 (2010).
M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
Y. Sheng, D. L. Ma, M. L. Ren, W. Q. Chai, Z. Y. Li, K. Koynov, and W. Krolikowski, Appl. Phys. Lett. 99, 031108 (2011).
Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, Opt. Lett. 28, 2115 (2003).
G. H. Shao, X. S. Song, F. Xu, and Y. Q. Lu, Opt. Express 20, 19343 (2012).
X. S. Song, Z. Y. Yu, Q. Wang, F. Xu, and Y. Q. Lu, Opt. Express 19, 380 (2011).
G. Poberaj, H. Hu, W. Sohler, and P. Gunter, Laser Photon. Rev. 6, 488 (2012).
J. T. Lin, Y. X. Xu, Z. W. Fang, M. Wang, J. X. Song, N. W. Wang, L. L. Qiao, W. Fang, and Y. Cheng, Sci. Rep. 5, 08072 (2015).
J. Wang, F. Bo, S. Wan, W. X. Li, F. Gao, J. J. Li, G. Q. Zhang, and J. J. Xu, Opt. Express 23, 23072 (2015).
L. T. Cai, Y. W. Wang, and H. Hu, Opt. Lett. 40, 3013 (2015).
H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M. P. Bernal, Opt. Express 20, 2974 (2012).
R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, Appl. Phys. Lett. 107, 162903 (2015).
N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, Phys. Rev. Lett. 108, 233902 (2012).
A. Agronin, Y. Rosenwaks, and G. Rosenman, Appl. Phys. Lett. 85, 452 (2004).
C. Li, Y. Cao, Y. Bai, A. Li, S. Zhang, and D. Wu, ACS Appl. Mater. Interfaces 7, 10146 (2015).
Z. Wen, C. Li, D. Wu, A. Li, and N. Ming, Nature Mater. 12, 617 (2013).
X. Qiu, X. Zhou, A. Li, Z. Gu, and D. Wu, Superlattices Microstruct. 75, 72 (2014).
B. Wang and C. H. Woo, J. Appl. Phys. 94, 4053 (2003).
A. Ofan, M. Lilienblum, O. Gaathon, A. Sehrbrock, A. Hoffmann, S. Bakhru, H. Bakhru, S. Irsen, R. M. Osgood, Jr., and E. Soergel, Nanotechnology 22, 285309 (2011).
Y. Kan, H. Bo, X. Lu, T. Xu, Y. Jin, X. Wu, F. Huang, and J. Zhu, Appl. Phys. Lett. 97, 202903 (2010).
A. V. Ievlev, A. N. Morozovska, V. Ya. Shur, and S. V. Kalinin, Appl. Phys. Lett. 104, 092908 (2014).
J. Jiang, X. J. Meng, D. Q. Geng, and A. Q. Jiang, J. Appl. Phys. 117, 104101 (2015).
V. Gopalan and T. E. Mitchell, J. Appl. Phys. 83, 941 (1998).
D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, Appl. Phys. Lett. 90, 171116 (2007).
Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, Phys. Rev. B 82, 115107 (2010).
Z. J. Wu, Y. Ming, F. Xu, and Y. Q. Lu, Opt. Express 20, 17192 (2012).
X. S. Qian, H. Wu, Q. Wang, Z. Y. Yu, F. Xu, Y. Q. Lu, and Y. F. Chen, J. Appl. Phys. 109, 053111 (2011).
D. Z. Wei, D. M. Liu, X. P. Hu, Y. Zhang, and M. Xiao, Laser Phys. Lett. 11, 095402 (2014).

Data & Media loading...


Article metrics loading...



Ferroelectric domain inversion and its effect on the stability of lithium niobate thin films on insulator (LNOI) are experimentally characterized. Two sets of specimens with different thicknesses varying from submicron to microns are selected. For micron thick samples (∼28 μm), domain structures are achieved by pulsed electric field poling with electrodes patterned via photolithography. No domain structure deterioration has been observed for a month as inspected using polarizing optical microscopy and etching. As for submicron (540 nm) films, large-area domain inversion is realized by scanning a biased conductive tip in a piezoelectric force microscope. A graphic processing method is taken to evaluate the domain retention. A domain life time of 25.0 h is obtained and possible mechanisms are discussed. Our study gives a direct reference for domain structure-related applications of LNOI, including guiding wave nonlinear frequency conversion, nonlinear wavefront tailoring, electro-optic modulation, and piezoelectric devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd