Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
I.G. Baek, D.C. Kim, M.J. Lee, H.-J. Kim, E.K. Yim, M.S. Lee, J.E. Lee, S.E. Ahn, S. Seo, J.H. Lee, J.C. Park, Y.K. Cha, S.O. Park, H.S. Kim, I.K. Yoo, U. Chung, J.T. Moon, and B.I. Ryu, IEEE Int. Devices Meet. 2005. IEDM Tech. Dig. (IEEE, 2005), pp. 750753.
D. Panda and T.-Y. Tseng, Thin Solid Films 531, 1 (2013).
D. Panda and T.-Y. Tseng, Ferroelectrics 471, 23 (2014).
M.J. Lee, Y. Park, B.S. Kang, S.E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J.H. Lee, S.J. Chung, Y.H. Kim, C.S. Lee, J.B. Park, I.G. Baek, and I.K. Yoo, Tech. Dig. - Int. Electron Devices Meet. IEDM 771 (2007).
F.M. Simanjuntak, D. Panda, T.-L. Tsai, C.-A. Lin, K.-H. Wei, and T.-Y. Tseng, Appl. Phys. Lett. 107, 033505 (2015).
D. Panda and T.-Y. Tseng, J. Mater. Sci. 48, 6849 (2013).
D. Panda, C.Y. Huang, and T.Y. Tseng, Appl. Phys. Lett. 100, 112901 (2012).
F.M. Simanjuntak, O.K. Prasad, D. Panda, C.-A. Lin, T.-L. Tsai, K.-H. Wei, and T.-Y. Tseng, Appl. Phys. Lett. 108, 183506 (2016).
F.M. Simanjuntak, D. Panda, T.-L. Tsai, C.-A. Lin, K.-H. Wei, and T.-Y. Tseng, J. Mater. Sci. 50, 6961 (2015).
H.S. Yoon, I.-G. Baek, J. Zhao, H. Sim, M.Y. Park, H. Lee, G.-H. Oh, J.C. Shin, I.-S. Yeo, and U.-I. Chung, 2009 Symp. VLSI Technol. 26 (2009).
J. Liang and H.S.P. Wong, IEEE Trans. Electron Devices 57, 2531 (2010).
M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C.B. Lee, D.H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.H. Park, Adv. Mater. 19, 3919 (2007).
X.A. Tran, W.G. Zhu, B. Gao, J.F. Kang, W.J. Liu, Z. Fang, Z.R. Wang, Y.C. Yeo, B.Y. Nguyen, M.F. Li, and H.Y. Yu, IEEE Electron Device Lett. 33, 585 (2012).
E. Linn, R. Rosezin, C. Kügeler, and R. Waser, Nat. Mater. 9, 403 (2010).
J. Lee, J. Shin, D. Lee, W. Lee, S. Jung, M. Jo, J. Park, K.P. Biju, S. Kim, S. Park, and H. Hwang, Tech. Dig. - Int. Electron Devices Meet. IEDM 452 (2010).
D. Panda, A. Dhar, and S.K. Ray, J. Appl. Phys 108, 104513 (2010).
D. Panda, A. Dhar, and S.K. Ray, IEEE Trans. Nanotechnology 11(1), 51 (2012).
D. Panda and M. Panda, J. Nanoscience and Nanotechnology 16(1), 1216 (2016).
S.-M. Lin, J.-S. Huang, W.-C. Chang, T.-C. Hou, H.-W. Huang, C.-H. Huang, S.-J. Lin, and Y.-L. Chueh, ACS Appl. Mater. Interfaces 5, 7831 (2013).
J.J. Yang, M.D. Pickett, X. Li, D. a a Ohlberg, D.R. Stewart, and R.S. Williams, Nat. Nanotechnol. 3, 429 (2008).
R. Waser, D. Jeong, and H. Schroeder, Phys. Rev. B 79, 195317 (2009).
M.D. Pickett, D.B. Strukov, J.L. Borghetti, J.J. Yang, G.S. Snider, D.R. Stewart, and R.S. Williams, J. Appl. Phys. 106 (2009).
L. Eyring and M. O’Keeffe, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 27, 1839 (1971).
M.W. Barsoum, Fundamentals of Ceramics (Taylor and Francis, New York), Vasa 622(2003).
F.A. Kröger and H.J. Vink, Solid State Phys. - Adv. Res. Appl. (1956), pp. 307435.
D. Panda, A. Dhar, and S.K. Ray, RSC Adv. 5, 33283 (2015).
F. Nardi, S. Balatti, S. Larentis, and D. Ielmini, Tech. Dig. - Int. Electron Devices Meet. IEDM (2011).

Data & Media loading...


Article metrics loading...



On the way towards high memory density and computer performance, a considerable development in energy efficiency represents the foremost aspiration in future information technology. Complementary resistive switch consists of two antiserial resistive switching memory (RRAM) elements and allows for the construction of large passive crossbar arrays by solving the sneak path problem in combination with a drastic reduction of the power consumption. Here we present a titanium oxide based complementary RRAM (CRRAM) device with Pt top and TiN bottom electrode. A subsequent post metal annealing at 400°C induces CRRAM. Forming voltage of 4.3 V is required for this device to initiate switching process. The same device also exhibiting bipolar switching at lower compliance current, Ic <50 μA. The CRRAM device have high reliabilities. Formation of intermediate titanium oxi-nitride layer is confirmed from the cross-sectional HRTEM analysis. The origin of complementary switching mechanism have been discussed with AES, HRTEM analysis and schematic diagram. This paper provides valuable data along with analysis on the origin of CRRAM for the application in nanoscale devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd