Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/7/10.1063/1.4959892
1.
J. Kim, A.-R. Han, J.H. Seo, J.H. Oh, and C. Yang, Chem. Mater. 24, 3464 (2012).
http://dx.doi.org/10.1021/cm301816t
2.
Y.J. Xia, Y.K. Li, Y.C. Zhu, J.F. Li, P. Zhang, J.F. Tong, C.Y. Yang, H.J. Li, and D.W. Fan, J. Mater. Chem. C 2, 1601 (2014).
http://dx.doi.org/10.1039/c3tc32192d
3.
I. Kang, S.M. Park, D.H. Lee, S.H. Han, D.S. Chung, Y.H. Kim, and S.K. Kwon, Sci. Adv.Mater. 5, 199 (2013).
http://dx.doi.org/10.1166/sam.2013.1436
4.
J.J.-A Chen, T.L. Chen, B. Kim, D.A. Poulsen, J.L. Mynar, J.M.J. Fréchet, and B. Ma, ACS Appl. Mater. Interfaces 2, 2679 (2010).
http://dx.doi.org/10.1021/am100523g
5.
S.D. Yuan, C.L. Dai, J.N. Weng, Q.B. Mei, Q.D. Ling, L.H. Wang, and W. Huang, J. Phys. Chem. A 115, 4535 (2011).
http://dx.doi.org/10.1021/jp201038f
6.
K. Navamani, G. Saranya, P. Kolandaivel, and K. Senthilkumar, Phys. Chem. Chem. Phys. 15, 17947 (2013).
http://dx.doi.org/10.1039/c3cp53099j
7.
A. Venkateswararao, K.R. Justin Thomas, C.-P. Lee, C.T. Li, and K.C. Ho, ACS Appl. Mater. Interfaces 6, 2528 (2014).
http://dx.doi.org/10.1021/am404948w
8.
D. A. Kislitsyn, B. N. Taber, C. F. Gervasi, L. Zhang, S. C. B. Mannsfeld, J. S. Prell, A. L. Brisenob, and G. V. Nazin, Phys. Chem. Chem. Phys. 18, 4842 (2016).
http://dx.doi.org/10.1039/C5CP07092A
9.
J. Kim, E. Kim, Y. Won, H. Lee, and K. Suh, Synth. Metals 139, 485 (2003).
http://dx.doi.org/10.1016/S0379-6779(03)00202-9
10.
K.M. Nalin de Silva, E. Hwang, W.K. Serem, F.R. Fronczek, J.C. Garno, and E.E. Nesterov, ACS Appl. Mater. Interfaces 4, 5430 (2012).
http://dx.doi.org/10.1021/am301349g
11.
C. Kim and M.C. Chen, Organic Electronics. 11, 801 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.01.022
12.
J. Youn, P.Y. Huang, Y.W. Huang, and M.C. Chen, Adv. Funct. Mater. 22, 48 (2012).
http://dx.doi.org/10.1002/adfm.201101053
13.
Y.M. Sun, Y.Q. Ma, and Y.Q. Liu, Adv. Funct. Mater 16, 426 (2006).
http://dx.doi.org/10.1002/adfm.200500547
14.
D.K. Wang, X.H. Jiang, C.M. Zhao, Z.H. Wang, H. Wang, and Z.L. Du, Chinese Sci. Bull. 55, 478 (2010).
http://dx.doi.org/10.1007/s11434-010-0001-1
15.
J.W. Shi, Y.B. Li, M. Jia, L. Xu, and H. Wang, J. Mater. Chem. 21, 17612 (2011).
http://dx.doi.org/10.1039/c1jm14383b
16.
R.G. Hicks and M.B. Nodwell, J. Am. Chem. Soc. 122, 6746 (2000).
http://dx.doi.org/10.1021/ja000752t
17.
C. Gómez-Navarro and P.L. Pablo, J. Mater. Sci. Mater. Electron. 17, 475 (2000).
http://dx.doi.org/10.1007/s10854-006-8094-7
18.
DMOL is a density functional theory program distributed by Accelrys Inc; B. Delley, “An all-electron numerical method for solving the local density functional for polyatomic molecules,” J. Chem. Phys. 92, 508 (1990);
http://dx.doi.org/10.1063/1.458452
B. Delley, “From molecules to solids with the DMol3 approach,” J. Chem. Phys. 113, 7756 (2000).
http://dx.doi.org/10.1063/1.1316015
19.
J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
20.
E. Rabani, D.R. Reichman, P.L. Geissler, and L.E. Brus, Nature 426, 271 (2003).
http://dx.doi.org/10.1038/nature02087
21.
C.L. Li, J.W. Shi, L. Xu, Y.G. Wang, Y.X. Cheng, and H. Wang, J. Org. Chem. 74, 408 (2008).
http://dx.doi.org/10.1021/jo802080g
22.
L. Zhang, L. Tan, W.P. Hu, and Z.H. Wang, “Synthesis,” J. Mater. Chem. 19, 8216 (2009).
http://dx.doi.org/10.1039/b913340b
23.
X.Y. Wang, W. Jiang, T. Chen, H.J. Yan, Z.H. Wang, L.J. Wan, and D. Wang, Chem. Commun. 49, 1829 (2013).
http://dx.doi.org/10.1039/c3cc37990f
24.
J.W. Shi, L. Xu, Y.B. Li, M. Jia, Y.H. Kan, and H. Wang, Org. Eelec. 14, 934 (2013).
http://dx.doi.org/10.1016/j.orgel.2013.01.002
25.
S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley Interscience, Hoboken, N.J, 2007).
26.
Q. Lu, C. Yao, X.H. Wang, and F.S. Wang, J. Phys. Chem. C 116, 17853 (2012).
http://dx.doi.org/10.1021/jp2119923
27.
S. Canola1, C. Pecoraro1, and F. Negri, Theor Chem Acc 135, 33 (2016).
http://dx.doi.org/10.1007/s00214-015-1757-9
28.
D. Luo, H. Sun, and Y. Li, in Surface Science Tools for Nanomaterials Characterization (Springer, 2015), Chap. 4, p. 117.
29.
S.W. Shi, P. Jiang, S. Chen, Y.P. Sun, X.H. Wang, K. Wang, S.L. Shen, X.Y. Li, Y.F. Li, and H.Q. Wang, Macromolecules 45, 7806 (2012).
http://dx.doi.org/10.1021/ma3014367
30.
M. Shiraishi and M. Ata, “Work Function of Carbon Nanotubes,” Carbon 39, 1913 (2001).
http://dx.doi.org/10.1016/S0008-6223(00)00322-5
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/7/10.1063/1.4959892
Loading
/content/aip/journal/adva/6/7/10.1063/1.4959892
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/7/10.1063/1.4959892
2016-07-22
2016-12-02

Abstract

Three kinds of 2,5,-diphenyl-dithienol[2, 3-: 3′, 2′-]thiophene (DP-DTT), 2,5,-distyryl-dithienol[2, 3-: 3′, 2′-]thiophene (DEP-DTT) and 2,5,-thienyl-dithienol[2, 3-: 3′, 2′-]thiophene (DET-DTT) micro-region structure and electronic properties were studied. Thin films of these functionalized DTT oligomers were prepared in a one-step drop-casting deposition onto highly oriented pyrolytic graphite substrates. The surface structure of these films was characterized by atomic force microscopy (AFM). Conducting probe atomic force microscope (C-AFM) and Kelvin probe force microscope (KFM) were both used to characterize the electronic transport behavior and surface potential distribution. The substituents of DTT oligomers can greatly affect their aggregation and the hopping conductance mechanism was used to explain the Au-DTTs-HOPG junctions. KFM investigation revealed that these oligomers with different substituents have different highest occupied molecular orbital energy levels. The corresponding theoretical analysis reveals similar result to KFM characterization. The - results indicated that the aggregates of molecules were the dominating factor to their micro-region electrical transport.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/7/1.4959892.html;jsessionid=wgYZXz8oUECU-fQ8GW3rW0ns.x-aip-live-03?itemId=/content/aip/journal/adva/6/7/10.1063/1.4959892&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/7/10.1063/1.4959892&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/7/10.1063/1.4959892'
Right1,Right2,Right3,