Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/7/10.1063/1.4959893
1.
S. Chikazumi, Physics of Magnetism (Wiley, New York, 1964).
2.
A. Aharoni, Introduction to the Theory of Ferromagnetism (Clarendon Press, Oxford, 1996).
3.
E. C. Stoner and E. P. Wohlfarth, Phil. Trans. R. Soc. London, Ser. A 240, 599 (1948).
http://dx.doi.org/10.1098/rsta.1948.0007
4.
N. A. Usov and S. E. Peschany, J. Magn. Magn. Mater. 174, 247 (1997).
http://dx.doi.org/10.1016/S0304-8853(97)00180-7
5.
J. Geshev, A. D. C. Viegas, and J. E. Schmidt, J. Appl. Phys. 84, 1488 (1998).
http://dx.doi.org/10.1063/1.368214
6.
J. Geshev, M. Mikhov, and J. E. Schmidt, J. Appl. Phys. 85, 7321 (1999).
http://dx.doi.org/10.1063/1.369356
7.
A. Thiaville, Phys. Rev. B 61, 12221 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.12221
8.
H. Schmidt and R. J. Ram, J. Appl. Phys. 89, 507 (2001).
http://dx.doi.org/10.1063/1.1323519
9.
J. Geshev, L. G. Pereira, J. E. Schmidt, and M. Mikhov, Appl. Phys. 90, 6243 (2001).
http://dx.doi.org/10.1063/1.1415062
10.
N. A. Usov and J. M. Barandiarán, J. Appl. Phys. 112, 053915 (2012).
http://dx.doi.org/10.1063/1.4749799
11.
W.T. Coffey, Yu.P. Kalmykov, and J.T. Waldron, The Langevin Equation, 2nd ed. (World Scientific, Singapore, 2004).
12.
N.A. Usov and Yu.B. Grebenshchikov, “Micromagnetics of Small Ferromagnetic Particles,” in Magnetic nanoparticles, edited by Prof. S.P. Gubin (Wiley-VCH, 2009), Chap. 8.
13.
N.A. Usov, J. Appl. Phys. 107, 123909 (2010).
http://dx.doi.org/10.1063/1.3445879
14.
I. S. Poperechny, Yu. L. Raikher, and V. I. Stepanov, Phys. Rev. B 82, 174423 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.174423
15.
W. T. Coffey and Yu. P. Kalmykov, J. Appl. Phys. 112, 121301 (2012).
http://dx.doi.org/10.1063/1.4754272
16.
R. Pastor-Satorras and J.M. Rubi, J. Magn. Magn. Mater. 221, 124 (2000).
http://dx.doi.org/10.1016/S0304-8853(00)00388-7
17.
V. Russier, C. Petit, J. Legrand, and M. P. Pileni, Phys. Rev. B 62, 3910 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.3910
18.
V. Russier, J. Appl. Phys. 89, 1287 (2001).
http://dx.doi.org/10.1063/1.1333034
19.
P. Poddar, J. L. Wilson, H. Srikanth, D. F. Farrell, and S. A. Majetich, Phys. Rev. B 68, 214409 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.214409
20.
S. A. Majetich and M. Sachan, J. Phys. D: Appl. Phys. 39, R407 (2006).
http://dx.doi.org/10.1088/0022-3727/39/21/R02
21.
W Figueiredo and W Schwarzacher, J. Phys.: Condens. Matter 19, 276203 (2007).
http://dx.doi.org/10.1088/0953-8984/19/27/276203
22.
D. A. Stariolo and O. V. Billoni, J. Phys. D: Appl. Phys. 41, 205010 (2008).
http://dx.doi.org/10.1088/0022-3727/41/20/205010
23.
S. A. Majetich, T. Wen, and R. A. Booth, ACS Nano 5, 6081 (2011).
http://dx.doi.org/10.1021/nn202883f
24.
S. Russ and A. Bunde, J. Phys.: Condens. Matter 23, 126001 (2011).
http://dx.doi.org/10.1088/0953-8984/23/12/126001
25.
D. Kechrakos and K. N. Trohidou, Phys. Rev. B 58, 12169 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.12169
26.
J. García-Otero, M. Porto, J. Rivas, and A. Bunde, Phys. Rev. Lett. 84, 167 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.167
27.
T.C. Schulthesis, M. Benakli, P. B. Visscher, K. D. Sorge, J. R. Thompson, F. A. Modine, T. E. Haynes, L. A. Boatner, G. M. Stocks, and W. H. Butler, J. Appl. Phys. 89, 7594 (2001).
http://dx.doi.org/10.1063/1.1363608
28.
H. Qu and J. Y. Li, Phys. Rev. B 68, 212402 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.212402
29.
M. Azeggagh and H. Kachkachi, Phys. Rev. B 75, 174410 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.174410
30.
J. S. Lee, R. P. Tan, J. H. Wu, and Y. K. Kim, Appl. Phys. Lett. 99, 062506 (2011).
http://dx.doi.org/10.1063/1.3624833
31.
J. Al Saei, M. El-Hilo, and R. W. Chantrell, J. Appl. Phys. 110, 023902 (2011).
http://dx.doi.org/10.1063/1.3609061
32.
G. Margaris, K. N. Trohidou, V. Iannotti, G. Ausanio, L. Lanotte, and D. Fiorani, Phys. Rev. B 86, 214425 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.214425
33.
M. Woinska, J. Szczytko, A. Majhofer, J. Gosk, K. Dziatkowski, and A. Twardowski, Phys. Rev. B 88, 144421 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.144421
34.
F. Vernay, Z. Sabsabi, and H. Kachkachi, Phys. Rev. B 90, 094416 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.094416
35.
E.M. Claesson, B. H. Erne, I, A Bakelaar, B. W. M. Kuipers, and A. P. Philipse, J. Phys.: Condens. Matter 19, 036105 (2007).
http://dx.doi.org/10.1088/0953-8984/19/3/036105
36.
V. Schaller, G. Wahnstrom, A. Sanz-Velasco, P. Enoksson, and C. Johansson, J. Magn. Magn. Mater. 321, 1400 (2009).
http://dx.doi.org/10.1016/j.jmmm.2009.02.047
37.
V. Schaller, G. Wahnström, A. Sanz-Velasco, S. Gustafsson, E. Olsson, P. Enoksson, and C. Johansson, Phys. Rev. B 80, 092406 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.092406
38.
V Schaller, G Wahnström, A Sanz-Velasco, P Enoksson, and C Johansson, J. Phys.: Conf. Series 200, 072085 (2010).
http://dx.doi.org/10.1088/1742-6596/200/7/072085
39.
A. Weddemann, A. Auge, D. Kappe, F. Wittbracht, and A. Hutten, J. Magn. Magn. Mater. 322, 643 (2010).
http://dx.doi.org/10.1016/j.jmmm.2009.10.031
40.
B. Rana, M. Agrawal, S. Pal, and A Barman, J. Appl. Phys. 107, 09B513 (2010).
http://dx.doi.org/10.1063/1.3359422
41.
N. A. Usov, M. L. Fdez-Gubieda, and J. M. Barandiarán, J. Appl. Phys. 113, 023907 (2013).
http://dx.doi.org/10.1063/1.4775409
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/7/10.1063/1.4959893
Loading
/content/aip/journal/adva/6/7/10.1063/1.4959893
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/7/10.1063/1.4959893
2016-07-22
2016-09-25

Abstract

A detailed numerical simulation of quasistatic hysteresis loops of dense clusters of interacting magnetic nanoparticles is carried out. Both clusters of magnetically soft and magnetically hard nanoparticles are considered. The clusters are characterized by an average particle diameter , the cluster radius , the particle saturation magnetization , and the uniaxial anisotropy constant . The number of particles in the cluster varies between = 30 - 120. The particle centers are randomly distributed within the cluster, their easy anisotropy axes being randomly oriented. It is shown that a dilute assembly of identical random clusters of magnetic nanoparticles can be characterized by two dimensionless parameters: 1) the relative strength of magneto-dipole interaction, / 2, and the average particle concentration within the cluster, = /. Here is the nanoparticle volume, and is the volume of the cluster, respectively. In the strong interaction limit, /  > >  1, where = 2/ is the anisotropy field, the ultimate hysteresis loops of dilute assemblies of clusters have been constructed. In the variables (/, /) these hysteresis loops depend only on the particle volume fraction . In the weak interaction limit, /  < <  1, the assembly hysteresis loops in the variables (/, /) are close to the standard Stoner-Wohlfarth hysteresis loop.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/7/1.4959893.html;jsessionid=INxdLTn0c2sZgEQ4rxI_dalf.x-aip-live-03?itemId=/content/aip/journal/adva/6/7/10.1063/1.4959893&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/7/10.1063/1.4959893&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/7/10.1063/1.4959893'
Right1,Right2,Right3,