Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. Strite, J. Vac. Sci. Technol. B 10, 1237 (1992).
M.-A. Dubois and P. Muralt, Appl. Phys. Lett. 74, 3032 (1999).
M.-A. Dubois and P. Muralt, J. Appl. Phys. 89, 6389 (2001).
X. Song, R. Fu, and H. He, Microelectronic Engineering 86, 2217 (2009).
R. Lanz, C. Lambert, L. Senn, L. Gabathuler, and G. J. Reynolds, in 2006 IEEE Ultrasonics Symposium, pp. 14811485.
F. Martin, P. Muralt, and M.-A. Dubois, J. Vac. Sci. Technol. A 24, 946 (2006).
F. Martin, P. Muralt, M.-A. Dubois, and A. Pezous, J. Vac. Sci. Technol. A 22, 361 (2004).
S. Marauska, V. Hrkac, T. Dankwort, R. Jahns, H. J. Quenzer, R. Knöchel, L. Kienle, and B. Wagner, Microsyst Technol 18, 787 (2012).
K. Tsubouchi, K. Sugai, and N. Mikoshiba, in 1981 Ultrasonics Symposium, pp. 375380.
S. Tadigadapa and K. Mateti, Meas. Sci. Technol. 20, 92001 (2009).
H. Loebl, M. Klee, C. Metzmacher, W. Brand, R. Milsom, and P. Lok, Materials Chemistry and Physics 79, 143 (2003).
H.-C. Lee, G.-H. Kim, S.-K. Hong, K.-Y. Lee, Y.-J. Yong, C.-H. Chun, and J.-Y. Lee, Thin Solid Films 261, 148 (1995).
M. Ishihara, S. Li, H. Yumoto, K. Akashi, and Y. Ide, Thin Solid Films 316, 152 (1998).
F. Engelmark, G. Fucntes, I. V. Katardjiev, A. Harsta, U. Smith, and S. Berg, J. Vac. Sci. Technol. A 18, 1609 (2000).
M. Clement, E. Iborra, J. Sangrador, A. Sanz-Hervás, L. Vergara, and M. Aguilar, J. Appl. Phys. 94, 1495 (2003).
V. Mortet, M. Nesladek, J. D’Haen, G. Vanhoyland, O. Elmazria, M. B. Assouar, P. Alnot, and M. D’Olieslaeger, phys. stat. sol. (a) 193, 482 (2002).<482::AID-PSSA482>3.0.CO;2-D
M. Akiyama, K. Nagao, N. Ueno, H. Tateyama, and T. Yamada, Vacuum 74, 699 (2004).
B.-H. Hwang, C.-S. Chen, H.-Y. Lu, and T.-C. Hsu, Materials Science and Engineering: A 325, 380 (2002).
F. Engelmark, G. F. Iriarte, I. V. Katardjiev, M. Ottosson, P. Muralt, and S. Berg, J. Vac. Sci. Technol. A 19, 2664 (2001).
G. F. Iriarte, F. Engelmark, and I. V. Katardjiev, J. Mater. Res. 17, 1469 (2002).
F. Medjani, R. Sanjinés, G. Allidi, and A. Karimi, Thin Solid Films 515, 260 (2006).
A. Ababneh, U. Schmid, J. Hernando, J. L. Sánchez-Rojas, and H. Seidel, Materials Science and Engineering: B 172, 253 (2010).
S. Trolier-McKinstry and P. Muralt, Journal of Electroceramics 12, 7 (2004).
J. Sellers, Surface and Coatings Technology 98, 1245 (1998).
K. Prume, P. Muralt, F. Calame, T. Schmitz-Kempen, and S. Tiedke, J Electroceram 19, 407 (2007).
M. Clement, J. Olivares, E. Iborra, S. González-Castilla, N. Rimmer, and A. Rastogi, Thin Solid Films 517, 4673 (2009).
W. Zhang, R. Vargas, T. Goto, Y. Someno, and T. Hirai, Appl. Phys. Lett. 64, 1359 (1994).
M. Schneider, A. Bittner, F. Patocka, M. Stöger-Pollach, E. Halwax, and U. Schmid, Appl. Phys. Lett. 101, 221602 (2012).
B. Paci, A. Generosi, V. Rossi Albertini, M. Benetti, D. Cannatà, F. Di Pietrantonio, and E. Verona, Sensors and Actuators A: Physical 137, 279 (2007).
V. Hrkac, A. Kobler, S. Marauska, A. Petraru, U. Schürmann, V. S. Kiran Chakravadhanula, V. Duppel, H. Kohlstedt, B. Wagner, B. V. Lotsch, C. Kübel, and L. Kienle, J. Appl. Phys. 117, 14301 (2015).
L. Sagalowicz, G. R. Fox, M.-A. Dubois, C. A. Muller, P. Muralt, and N. Setter, Journal of the European Ceramic Society 19, 1427 (1999).
J. L. Rouviere, M. Arlery, B. Daudin, G. Feuillet, and O. Briot, Materials Science and Engineering: B 50, 61 (1997).
P. Muralt, J. Conde, A. Artieda, F. Martin, and M. Cantoni, MRF 1, 19 (2009).
R. Jahns, H. Greve, E. Woltermann, E. Quandt, and R. H. Knochel, IEEE Trans. Instrum. Meas. 60, 2995 (2011).
E. Yarar, S. Salzer, V. Hrkac, A. Piorra, M. Höft, R. Knöchel, L. Kienle, and E. Quandt, Appl. Phys. Lett. 109, 22901 (2016).

Data & Media loading...


Article metrics loading...



A low-temperature sputter deposition process for the synthesis of aluminum nitride (AlN) thin films that is attractive for applications with a limited temperature budget is presented. Influence of the reactive gas concentration, plasma treatment of the nucleation surface and film thickness on the microstructural, piezoelectric and dielectric properties of AlN is investigated. An improved crystal quality with respect to the increased film thickness was observed; where full width at half maximum (FWHM) of the AlN films decreased from 2.88 ± 0.16° down to 1.25 ± 0.07° and the effective longitudinal piezoelectric coefficient (d) increased from 2.30 ± 0.32 pm/V up to 5.57 ± 0.34 pm/V for film thicknesses in the range of 30 nm to 2 m. Dielectric loss angle (tan δ) decreased from 0.626% ± 0.005% to 0.025% ± 0.011% for the same thickness range. The average relative permittivity (ε) was calculated as 10.4 ± 0.05. An almost constant transversal piezoelectric coefficient (|e|) of 1.39 ± 0.01 C/m2 was measured for samples in the range of 0.5 m to 2 m. Transmission electron microscopy (TEM) investigations performed on thin (100 nm) and thick (1.6 m) films revealed an (002) oriented AlN nucleation and growth starting directly from the AlN-Pt interface independent of the film thickness and exhibit comparable quality with the state-of-the-art AlN thin films sputtered at much higher substrate temperatures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd