Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998).
A. Bachtold, M. S. Fuhrer, S. Plyasunov, M. Forero, Erik H. Anderson, A. Zettl, and Paul L. McEuen, Phys. Rev. Lett. 84, 6082 (2000).
A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature 424, 654 (2003).
B. Bourlon, C. Miko, L. Forró, D. C. Glattli, and A. Bachtold, Phys. Rev. Lett. 93, 176806 (2004).
S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science 280, 1744 (1998).
A. Bachtold, C. Strunk, J. Salvetat, J. Bonard, L. Forró, T. Nussbaumer, and C. Schönenberger, Nature 397, 673 (1999).
A. M. Lunde, K. Flensberg, and A. P. Jauho, Phys. Rev. B 71, 125408 (2005).
F. Triozon, S. Roche, A. Rubio, and D. Mayou, Phys. Rev. B 69, 121410 (2004).
S. Sanvito, Y-K. Kwon, D. Tománek, and C. J. Lambert, Phys. Rev Lett. 84, 1974 (2000).
A. Hansson and S. Stafström, Phys. Rev. B 67, 075406 (2003).
A. Stetter, J. Vancea, and C. H. Back, Appl. Phys. Lett. 93, 172103 (2008).
A. Stetter, J. Vancea, and C. H. Back, Phys. Rev. B. 82, 115451 (2010).
W. Wang, K. Munakata, M. Rozler, and M. R. Beasley, Phys. Rev Lett. 110, 236802 (2013).
Y. S. Huang, C. S. Chang, and T. T. Tsong, National Nano Project & Evaluation Conference, Taipei, Taiwan (2006).
Y. C. Chang, Y. H. Liaw, T. S. Huang, T. Hsu, C. S. Chang, and T. T. Tsong, Small 4, 2195 (2008).
S. C. Wang, Y. C. Chang, D. H. Lien, T. Hsu, and C. S. Chang, Appl. Phys. Lett. 97, 133105 (2010).
Y. S. Chen, Y. C. Chang, S. C. Wang, L. Y. Chen, D. H. Lien, L. J. Chen, and C. S. Chang, Small 8, 2158 (2012).
L.Y. Chen and C. S. Chang, Appl. Phys. Lett. 105, 243110 (2014).
R. Krupke, F. Hennrich, H. V. Löhneysen, and M. M. Kappes, Science 301, 344 (2003).
A. Bezryadin, A. R. M. Verschueren, S. J. Tans, and C. Dekker, Phys. Rev Lett. 80, 4036 (1998).
P. G. Collins, M. S. Arnold, and P. Avouris, Science 292, 706 (2001).
P. G. Collins, M. Hersam, M. S. Arnold, R. Martel, and P. Avouris, Phys. Rev Lett. 6, 3128 (2001).
See supplementary material at for video of probing the potential along the MWCNT.[Supplementary Material]
X. Zhou, J. Park, S. Huang, J. Liu, and P. L. McEuen, Phys. Rev. Lett. 95, 146805 (2005).
A. Nieuwoudt and Y. Massoud, IEEE Trans. Electron Devices 53, 2460 (2006).
A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fisher, and R. E. Smalley, Science 273, 483 (1996).
J. E. Fischer, H. Dai, A. Thess, R. Lee, N. M. Hanjani, D. L. Dehaas, and R. E. Smalley, Phys. Rev. B 55, R4921(R) (1997).
C. L. Kane, E. J. Mele, R. S. Lee, J. E. Fischer, P. Petit, H. Dai, A. Thess, R. E. Smalley, A. R. M. Verschueren, S. J. Tans, and C. Dekker, Europhys. Lett. 41, 683 (1998).
H. Li, W. Y. Yin, K. Banerjee, and J. F. Mao, IEEE Trans. Electron Devices 55, 1328 (2008).

Data & Media loading...


Article metrics loading...



The electric current distribution in a multiwall carbon nanotube (MWCNT) was studied by measuring the electric potential along an individual MWCNT in the ultra-high vacuum transmission electron microscope (TEM). The current induced voltage drop along each section of a side-bonded MWCNT was measured by a potentiometric probe in TEM. We have quantitatively derived that the current on the outermost shell depends on the applied current and the shell diameter. More proportion of the total electronic carriers hop into the inner shells when the applied current is increased. The larger a MWCNT’s diameter is, the easier the electronic carriers can hop into the inner shells. We observed that, for an 8 nm MWCNT with 10 μA current applied, 99% of the total current was distributed on the outer two shells.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd