Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/7/10.1063/1.4960109
1.
J. K. Shurtleff, R. T. Lee, C. M. Fetzer, and G. B. Stringfellow, Applied Physics Letters 75, 19141916 (1999).
http://dx.doi.org/10.1063/1.124869
2.
D. O. Scanlon and A. Walsh, Applied Physics Letters 100, 251911 (2012).
http://dx.doi.org/10.1063/1.4730375
3.
P. St-Jean, G. A. Seryogin, and S. Francoeur, Applied Physics Letters 96, 231913 (2010).
http://dx.doi.org/10.1063/1.3442917
4.
N. Feldberg, B. Keen, J. D. Aldous, D. Scanlon, P. A. Stampe, R. Kennedy, R. Reeves, T. D. Veal, and S. Durbin, “ZnSnN2: A new earth-abundant element semiconductor for solar cells,” in Proceedings of the 38th Photovoltaic Specialists Conference (PVSC) (IEEE, New York, NY, 2012), pp. 25242527.
5.
L. Lahourcade, N. C. Coronel, K. T. Delaney, S. K. Shukla, N. A. Spaldin, and H. A. Atwater, “Structural and optoelectronic characterization of RF sputtered ZnSnN2,” Adv. Mater. 25, 2562 (2013).
http://dx.doi.org/10.1002/adma.201204718
6.
Punya, W. R. L. Lambrecht, and M. van Schilfgaarde, “Quasiparticle band structure of Zn IV-N2 compounds,” Phys. Rev. B 84, 165204 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165204
7.
N. Feldberg, J. D. Aldous, W. M. Linhart, L. J. Phillips, K. Durose, P. A. Stampe, R. J. Kennedy, D. O. Scanlon, G. Vardar, R. L. Field et al., “Growth, disorder, and physical properties of ZnSnN2,” Appl. Phys. Lett. 103, 042109 (2013).
http://dx.doi.org/10.1063/1.4816438
8.
T. D. Veal, N. Feldberg, N. F. Quackenbush, W. M. Linhart, D. O. Scanlon, L. F. Piper, and S. M. Durbin, Advanced Energy Materials 5 (2015).
http://dx.doi.org/10.1002/aenm.201501462
9.
W. Schockley and H. J. Queisser, J. Appl. Phys. 32, 510519 (1961).
http://dx.doi.org/10.1063/1.1736034
10.
T. Tiedje, E. Yablonovich, G. D. Cody, and B. G. Brooks, IEEE Trans. Electron Devices 31, 711716 (1984).
http://dx.doi.org/10.1109/T-ED.1984.21594
11.
S. P. Bremner, M. Y. Levy, and C. B. Honsberg, Prog. Photovoltaics 16, 225233 (2008).
http://dx.doi.org/10.1002/pip.799
12.
S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, Acta Mater. 61, 945951 (2013).
http://dx.doi.org/10.1016/j.actamat.2012.10.042
13.
P. C. Quayle, E. W. Blanton, A. Punya, G. T. Junno, K. He, L. Han, and K. Kash, Physical Review B 91(20), 205207 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.205207
14.
Paul C. Quayle, Keliang He, Jie Shan, and Kathleen Kash, “Synthesis, lattice structure, and band gap of ZnSnN2,” MRS Communications 3, 135138 (2013, doi:10.1557/mrc.2013.19.
http://dx.doi.org/10.1557/mrc.2013.19
15.
Fioretti et al., “Combinatorial insights into doping control and transport properties of zinc tin nitride,” Journal of Materials Chemistry C 3(42), 1101711028 (2015).
http://dx.doi.org/10.1039/C5TC02663F
16.
G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B 59, 17581775 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
17.
G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B 54, 1116911186 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
18.
J. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
19.
Punya et al., Phys. Rev. B 84, 165204 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165204
20.
P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, B. Henrich, I. Johnson, A. Mozzanica, C. M. Schleputz, P. R. Willmott, and B. Schmitt, J. Synchrotron Radiat. 16, 368 (2009).
http://dx.doi.org/10.1107/S0909049509009911
21.
C. M. Schlepütz, R. Herger, P. R. Willmott, B. D. Patterson, O. Bunk, C. Brönnimann, B. Henrich, G. Hülsen, and E. F. Eikenberry, Acta Cryst. A 61, 418 (2005).
http://dx.doi.org/10.1107/S0108767305014790
22.
C. M. Schlepütz, S. O. Mariager, S. A. Pauli, R. Feidenhans’l, and P. R. Willmott, J. Appl. Crystallogr. 44, 73 (2011).
http://dx.doi.org/10.1107/S0021889810048922
23.
Growth, disorder, and physical properties of ZnSnN2, N. Feldberg, J. D. Aldous, W. M. Linhart, L. J. Phillips, K. Durose, P. A. Stampe, R. J. Kennedy, D. O. Scanlon, G. Vardar, R. L. Field, T. Y. Jen, R. S. Goldman, T. D. Veal, and S. M. Durbin, Applied Physics Letters 103, 042109 (2013) DOI:http://dx.doi.org/10.1063/1.4816438.
http://dx.doi.org/10.1063/1.4816438
24.
S. Francoeur, G. A. Seryogin, S. A. Nikishin, and H. Temkin, Appl. Phys. Lett. 76, 2017 (2000).
http://dx.doi.org/10.1063/1.126240
25.
See supplementary material at http://dx.doi.org/10.1063/1.4960109 for information on the relationship between space group permutations of Pna21and Pmc21orthorhombic space groups, θ-2θ measurements and pole figure plots showing two-fold symmetry in ZnSnN2films deposited on LiGaO2 substrates.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/7/10.1063/1.4960109
Loading
/content/aip/journal/adva/6/7/10.1063/1.4960109
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/7/10.1063/1.4960109
2016-07-26
2016-12-07

Abstract

We report on the crystal structure of epitaxial ZnSnN films synthesized via plasma-assisted vapor deposition on (111) yttria stabilized zirconia (YSZ) and (001) lithium gallate (LiGaO) substrates. X-ray diffraction measurements performed on ZnSnN films deposited on LiGaO substrates show evidence of single-crystal, phase-pure orthorhombic structure in the Pn2a symmetry [space group (33)], with lattice parameters in good agreement with theoretically predicted values. This Pn2a symmetry is imposed on the ZnSnN films by the LiGaO substrate, which also has orthorhombic symmetry. A structural change from the wurtzite phase to the orthorhombic phase in films grown at high substrate temperatures ∼550°C and low values of nitrogen flux ∼10−5 Torr is observed in ZnSnN films deposited on YSZ characterized by lattice contraction in the basal plane and a 5.7% expansion of the out-of-plane lattice parameter.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/7/1.4960109.html;jsessionid=v6XdAgr4-OPQ7D2n0_3Ahor4.x-aip-live-06?itemId=/content/aip/journal/adva/6/7/10.1063/1.4960109&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/7/10.1063/1.4960109&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/7/10.1063/1.4960109'
Right1,Right2,Right3,