Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
K. S. Novoselov, A. K. Geim, S. V. Morosov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field in atomically thin carbon films,” Science 306, 666 (2004).
K. S. Novoselov, A. K. Geim, S. V. Morosov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimenensional gas of massless Dirac fermions graphene,” Nature 438, 197 (2005).
A. H. Castro Neto, F. Guinea, n. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys 81, 109 (2009).
E. McCann, “Asymmetry gap in the electronic band structure of bilayer graphene,” Phys. Rev. B 74, 161403 (2006).
H. Min, B. Sahu, S. K. Banerjee, and A. H. MacDonald, “Ab initio theory of gate induced gaps in graphene bilayers,” Phys. Rev. B 75, 155115 (2007).
K. M. Borysenko, J. T. Mullen, X. Li, Y. G. Semenov, J. M. Zavada, M. B. Buongiorno Nardelli, and K. W. Kim, “Electron-phonon interactions in bilayer graphene,” Phys. Rev. B 83, 161402 (R) (2011).
Y. Zhang, Y. -W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall efect and Berry’s phase in graphene,” Nature 438, 201 (2005).
I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van Der Marel, and A. B. Kuzmenko, “Giant Farady rotation in single-and multilayer graphene,” Nature Phys 7, 48 (2011).
T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, “Controlling the electronic structure of Bilayer graphene,” Science 313, 951 (2006).
M. Koshino and T. Ando, “Transport in bilayer graphene: Calculations within a self-consistent Born approximation,” Phys. Rev. B 73, 245403 (2006).
E. V. Castro, K. S. Novoselov, S. V. Morosov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, “Biased Bilayer graphene: Semiconductor with a gap tunable by the Electric field effect,” Phys. Rev. Lett 99, 216802 (2007).
Ed. McCann and V. I. Falko, “Landau level degeneracy and quantum Hall effect in a Graphite Bilayer,” Phys. Rev. Lett 96, 086805 (2006).
J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, “Gate induced insulating state in bilayer graphene devices,” Nature Mat. (2007), doi:10.1038/nmat2082.
N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Electronic properties of disordered two-dimenensional carbon,” Phys. Rev. B 73, 125411 (2006).
J. Nilsson, A. H. Castro Neto, F. Guinea, and N. M. R. Peres, “Electronic properties of graphene Multilayers,” Phys. Rev. Lett 97, 266801 (2006).
J. Nilsson and A. H. Castro Neto, “Impurities in a biased graphene bilayer,” Phys. Rev. Lett 98, 126801 (2007).
K. Nomura and A. H. MacDonald, “Quantum Transport of massless Dirac fermions,” Phys. Rev. Lett 98, 076602 (2007).
S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Saram, “A self-consistent theory for graphene transport,” Proc. Natl. Acad. Sci. U. S. A. 104, 18392 (2007).
L. Hao and T. K. Lee, “Thermopower of gapped bilayer graphene,” Phys. Rev. B 81, 165445 (2010).
H. Rezania and A. Abdi, “Thermal conductivity of disordered AA-stacked bilayer graphene in the presence of bias voltage,” European Physical Journal B 88, 1 (2015).
H. Rezania and M. Yarmohammadi, “Dynamical thermal conductivity of bilayer graphene in the presence of bias voltage,” Physica E 75, 125 (2015).
H. Rezania and M. Yarmohammadi, “Dynamical thermoelectric properties of doped AA-stacked bilayer graphene,” Superlattice and Microstructures 89, 15 (2016).
H. Rezania and M. Yarmohammadi, “The effects of impurity doping on the optical properties of biased bilayer graphene,” Optical Materials 57, 8 (2016).
H. Rezania and M. Yarmohammadi, “Optical conductivity of AA-stacked bilayer graphene in presence of bias voltage beyond Dirac approximation,” Indian J Phys 90, 811 (2016).
T. Ando, Y. Zhang, and H. Suzuura, “Dynamical conductivity and Zero-Mode Anomaly in Honeycomb Lattices,” J. Phys. Soc. Jpn 71, 1318 (2002).
R. R. Nair, B. Blake, A. N. Grigeronke, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure constant difines visual transparency of graphene,” Science 320, 1308 (2008).
Y. Xu, X. Li, and J. Dong, “electronic instabilities of the AA-Honeycomb Bilayer,” Nanotechnology 21, 065711 (2010).
L. A. Falkovaky and A. A. Varlamov, “space time dispersion of graphene conductivity,” Euro. Phys. J. B 56, 281 (2007).
V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto optical conductivity in graphene,” J. Phys: Condense. Mtter 19, 026222 (2007).
V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and Hall conductivity in graphene,” Phys. Rev. B 75, 165407 (2007).
Nguyen Hong Shon and Tsuneya Ando, “quantum transport in Two-dimenensional graphite system,” J. Phys. Soc. Jpn 67, 2421 (1998).
X-Z. Yan and C. S. Ting, “Hall coefficient of Dirac in graphene under charged impurity scatterings,” Phys. Rev. B 80, 155423 (2009).
S. Y. Zhou, G. H. Gweon, and A. Lanzara, “Low energy excitations in graphite: the role of dimenensionality and lattice defects,” Annals of Physics 321, 1730 (2006).
P. Mallet, F. Varchon, C. Naud, L. Magaud, C. Berger, and J.-Y. Veuillen, “Electron states of mono-and bilayer graphene on SiC probed by scanning -tunneling microscopy,” Phys. Rev. B 76, 041403 (2007).
G. Li and E. V. Andrei, “Observation of Landau levels of Dirac fermions in graphite,” Nature Physics 3, 623 (2007).
J. Nilsson, A. H. Castro Neto, F. Guinea, and N. M. R. Peres, “Tranmission through a biased graphene bilayer barrier,” Phys. Rev. B 76, 165416 (2007).
I. Lobato and B. Partoens, “Muliple Dirac particles in AA-stacked graphite and multilayers of graphene,” Phys. Rev. B 83, 165429 (2011).
G. D. Mahan, Many Particle Physics (Plenumn Press, New York, 1993).
S. Doniach and E. H. Sondheimer (World Scientific, Singapore, 1988).
A. L. Fetter and J. D. Walecka, Quantum Theory of Many Particle Systems (MacGraw-Hill, New York, 1971).

Data & Media loading...


Article metrics loading...



We address the dynamical thermal conductivity of biased bilayer graphene doped with acceptor impurity atoms for AA-stacking in the context of tight binding model Hamiltonian. The effect of scattering by dilute charged impurities is discussed in terms of the self-consistent Born approximation. Green’s function approach has been exploited to find the behavior of thermal conductivity of bilayer graphene within the linear response theory. We have found the frequency dependence of thermal conductivity for different values of concentration and scattering strength of dopant impurity. Also the dependence of thermal conductivity on the impurity concentration and bias voltage has been investigated in details.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd