Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/7/10.1063/1.4960427
1.
M. Achermann, The Journal of Physical Chemistry Letters 1 (2010).
http://dx.doi.org/10.1021/jz101102e
2.
Y. Fedutik et al., Journal of the American Chemical Society 129 (2007).
http://dx.doi.org/10.1021/ja074705d
3.
E. Cohen-Hoshen et al., Nano letters 12 (2012).
http://dx.doi.org/10.1021/nl301917d
4.
P. Scodeller et al., Journal of the American Chemical Society 130 (2008).
http://dx.doi.org/10.1021/ja802318f
5.
Q. Q. Dou et al., Scientific reports 5 (2015).
6.
R. K. Sahu et al., Journal of colloid and interface science 366 (2012).
http://dx.doi.org/10.1016/j.jcis.2011.09.065
7.
X. Li and Y. Wang, Journal of Alloys and Compounds 509 (2011).
8.
P. V. Kamat, The Journal of Physical Chemistry Letters 3 (2012).
9.
S. Phadtare et al., Chemistry of materials 15 (2003).
http://dx.doi.org/10.1021/cm020784a
10.
S. T. Kochuveedu, Y. H. Jang, and D. H. Kim, Chemical Society Reviews 42 (2013).
http://dx.doi.org/10.1039/c3cs60043b
11.
C. T. Dinh et al., Angewandte Chemie International Edition 53 (2014).
http://dx.doi.org/10.1002/anie.201400966
12.
K. L. Kelly et al., The Journal of Physical Chemistry B 107 (2003).
http://dx.doi.org/10.1021/jp026731y
13.
E. R. Encina, M. A. Pérez, and E. A. Coronado, Journal of nanoparticle research 15 (2013).
http://dx.doi.org/10.1007/s11051-013-1688-0
14.
J. Xiong et al., ACS applied materials & interfaces 6 (2014).
15.
V. Dinesh et al., RSC Advances 4 (2014).
16.
J. Xiong et al., CrystEngComm 18 (2016).
17.
S. Das et al., Journal of Photochemistry and Photobiology B: Biology 142 (2015).
http://dx.doi.org/10.1016/j.jphotobiol.2014.10.021
18.
M. E. Aguirre et al., The Journal of Physical Chemistry C 115 (2011).
http://dx.doi.org/10.1021/jp209117s
19.
M. Macias-Montero et al., ACS applied materials & interfaces 7 (2015).
http://dx.doi.org/10.1021/am506622x
20.
Y. Zhao et al., APL Materials 3 (2015).
http://dx.doi.org/10.1063/1.4928287
21.
Y. Liang et al., New Journal of Chemistry (2016).
22.
G. Kresse and J. Furthmüller, Physical Review B 54 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
23.
J. P. Perdew, K. Burke, and M. Ernzerhof, Physical review letters 77 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
24.
R. Fournier, Journal of Chemical Physics 115 (2001).
http://dx.doi.org/10.1063/1.1383288
25.
E. M. Fernández et al., Physical Review B 70 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.165403
26.
V. Bonačić-Koutecky, V. Veyret, and R. Mitrić, The Journal of Chemical Physics 115 (2001).
http://dx.doi.org/10.1063/1.1415077
27.
C. Li et al., Applied physics letters 90 (2007).
28.
Z. Tu and X. Hu, Physical Review B 74 (2006).
29.
H. Zhang and D. Tian, Computational Materials Science 42 (2008).
30.
X. Shao, X. Liu, and W. Cai, Journal of chemical theory and computation 1 (2005).
http://dx.doi.org/10.1021/ct049865j
31.
X. Yang, W. Cai, and X. Shao, The Journal of Physical Chemistry A 111 (2007).
32.
H. Liu et al., The Journal of Physical Chemistry C 116 (2012).
33.
Y. Li, X. Zhao, and W. Fan, The Journal of Physical Chemistry C 115 (2011).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/7/10.1063/1.4960427
Loading
/content/aip/journal/adva/6/7/10.1063/1.4960427
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/7/10.1063/1.4960427
2016-07-29
2016-12-09

Abstract

The structural properties of Ag @(ZnO) (n=6-18) core-shell nanoparticles have been investigated by the first principles calculations, and the core-shell nanostructure with n=13 is proved to be the most stable one for the first time. Ag @(ZnO) core-shell nanostructure possesses higher chemistry activity and shows a red shift phenomenon in the light of the absorption spectrum compare to the (ZnO) , this can be confirmed by the calculated electron structure. The visible-light could be absorbed by Ag @(ZnO) to improve the photo-catalysis of (ZnO) nanostructure. Our results show good agreement with experiments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/7/1.4960427.html;jsessionid=qdnqy68kpkXVjADwao2N__GN.x-aip-live-06?itemId=/content/aip/journal/adva/6/7/10.1063/1.4960427&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/7/10.1063/1.4960427&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/7/10.1063/1.4960427'
Right1,Right2,Right3,