Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
K. Takenaka and H. Takagi, “Zero thermal expansion in a pure-form antiperovskite manganese nitride,” Applied Physics Letters 94(13), 131904 (2009).
J.S.O. Evans, “Negative thermal expansion materials.,” J. Chem. Soc., Dalton Trans. 1999, 33173326 (1999).
K. Takenaka and H. Takagi, “Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides,” Applied Physics Letters 87(26), 261902 (2005).
L. Ding et al., “Spin-glass-like behavior and negative thermal expansion in antiperovskite Mn3Ni1-xCuxN compounds,” Journal of Applied Physics 117(21), 213915 (2015).
X.G. Guo et al., “Magnetically driven negative thermal expansion in antiperovskite Ga1-xMnxN0.8Mn3 (0.1 ⩽ x ⩽ 0.3),” Applied Physics Letters 107(20), 202406 (2015).
J.C. Lin et al., “Giant negative thermal expansion covering room temperature in nanocrystalline GaNxMn3,” Applied Physics Letters 107(13), 131902 (2015).
J. Tan et al., “Near zero thermal expansion properties in antiperovskite Mn3Cu0.6Ge0.4N prepared by spark plasma sintering,” Cryogenics 63, 122-124 (2014).
K. Takenaka and M. Ichigo, “Thermal expansion adjustable polymer matrix composites with giant negative thermal expansion filler,” Composites Science and Technology 104, 47-51 (2014).
Z. Sun and X. Song, “Effect of Microstructure Scale on Negative Thermal Expansion of Antiperovskite Manganese Nitride,” Journal of Materials Science & Technology 30(9), 903-909 (2014).
S. Deng et al., “Frustrated Triangular Magnetic Structures of Mn3ZnN: Applications in Thermal Expansion,” The Journal of Physical Chemistry C 119(44), 24983-24990 (2015).
J. Tan et al., “Broad negative thermal expansion operation-temperature window in antiperovskite manganese nitride with small crystallites,” Nano Research 8(7), 2302-2307 (2015).
S. Deng et al., “Invar-like Behavior of Antiperovskite Mn3+xNi1–xN Compounds,” Chemistry of Materials 27(7), 2495-2501 (2015).
P. Tong, B.-S. Wang, and Y.-P. Sun, “Mn-based antiperovskite functional materials: Review of research,” Chinese Physics B 22(6), 067501 (2013).
X. Song et al., “Adjustable zero thermal expansion in antiperovskite manganese nitride,” Adv Mater 23(40), 4690-4 (2011).
C. Wang et al., “Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn3(Zn,M)x N(M=Ag, Ge),” Physical Review B 85(22), (2012).
S. Iikubo et al., “Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN,” Phys Rev Lett 101(20), 205901 (2008).
J. Matsuno et al., “Local structure anomaly around Ge dopants in Mn[sub 3]Cu[sub 0.7]Ge[sub 0.3]N with negative thermal expansion,” Applied Physics Letters 94(18), 181904 (2009).
K. Kodama et al., “Gradual development of Γ5g antiferromagnetic moment in the giant negative thermal expansion material Mn3Cu1−xGexN (x ∼ 0.5),” Physical Review B 81(22), (2010).
B.Y. Qu, H.Y. He, and B.C. Pan, “Origin of the Giant Negative Thermal Expansion in,” Advances in Condensed Matter Physics 2012, 1-7 (2012).
K. Takenaka et al., “Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect,” Applied Physics Letters 92(1), 011927 (2008).
J. Miao et al., “Thermal expansion and electrical properties of stannum doped manganese nitrides and composites,” Journal of the European Ceramic Society 35(12), 3213-3217 (2015).
P. Tong et al., “Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1-xSnxNMn3,” Applied Physics Letters 102(4), 041908 (2013).
R. Huang et al., “Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn[sub 3]CuN codoped with Ge and Si,” Applied Physics Letters 93(8), 081902 (2008).
T. Hamada and K. Takenaka, “Giant negative thermal expansion in antiperovskite manganese nitrides,” Journal of Applied Physics 109(7), 07E309 (2011).
Y. Sun et al., “Negative Thermal Expansion and Magnetic Transition in Anti-Perovskite Structured Mn3Zn1-xSnxN Compounds,” Journal of the American Ceramic Society 93(8), 2178-2181 (2010).
Y. Sun et al., “Lattice contraction and magnetic and electronic transport properties of Mn[sub 3]Zn[sub 1-x]Ge[sub x]N,” Applied Physics Letters 91(23), 231913 (2007).
J.C. Lin et al., “Tunable negative thermal expansion related with the gradual evolution of antiferromagnetic ordering in antiperovskite manganese nitrides Ag1−xNMn3+x (0 ⩽ x ⩽ 0.6),” Applied Physics Letters 106(8), 082405 (2015).
S. Deng et al., “The evolution of magnetic transitions, negative thermal expansion and unusual electronic transport properties in Mn3AgxMnyN,” Solid State Communications 222, 37-41 (2015).
G. Kresse and J. Hafner, “Ab initiomolecular dynamics for liquid metals,” Physical Review B 47(1), 558-561 (1993).
G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B 54(16), 11169-11186 (1996).
J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters 77(18), 3865-3868 (1996).
D.F.a.E.F. Bertaut, “Magnetic Studies of the Metallic Perovskite-Type compounds of Manganese,” Journal of the Physical Society of Japan 44(3), 781-791 (1978).
B.Y. Qu and B.C. Pan, “Nature of the negative thermal expansion in antiperovskite compound Mn3ZnN,” Journal of Applied Physics 108(11), 113920 (2010).
B.Y. Qu, H.Y. He, and B.C. Pan, “Interplay of the doped Ge atoms and the N vacancies with the negative thermal expansion of M3(Cu1-x Ge x )N1-y,” Applied Physics A 114(3), 785-791 (2013).
X.S. Yongjuan Dai, Rongjin Huang, Laifeng Li, and ZhonghuaSun, “Effect of Si doping on structure, thermal expansion and magnetism of antiperovskite manganese nitrides Mn3Cu1−xSixN,” Materials Letters 139, 409-413 (2015).