Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4960455
1.
A. P. Blanchard, R. J. Kaiser, and L. E. Hood, Biosens. Bioelectron. 11, 687 (1996).
http://dx.doi.org/10.1016/0956-5663(96)83302-1
2.
Physics of Ice, edited by V. F. Petrenko and R. W. Whitworth (Oxford University Press, Oxford, New York, 1999).
3.
Interfacial and Confined Water, 1st ed., edited by I. Brovchenko and A. Oleinikova (Elsevier, Amsterdam, Boston, 2008).
4.
Y.-W. Chen and H.-P. Cheng, Appl. Phys. Lett. 97, 161909 (2010).
http://dx.doi.org/10.1063/1.3504710
5.
B. Hammer, S. Wendt, and F. Besenbacher, Top catal 53, 423 (2010).
http://dx.doi.org/10.1007/s11244-010-9454-3
6.
R Schaub, E Wahlström, A Ronnau, d ELægsgaar, I Stensgaard, and F Besenbacher, Science 299, 377 (2003).
http://dx.doi.org/10.1126/science.1078962
7.
S. went, M. Frerichs, T. Wei, M.S. Chen, V. Kempter, and D.W. Goodman, Surf. Sci. 565, 107 (2004).
http://dx.doi.org/10.1016/j.susc.2004.06.213
8.
A. V. Bandura, J. D. Kubicki, and J. O. Sofo, J.Phys.Chem.C 115, 5756 (2011).
http://dx.doi.org/10.1021/jp1106636
9.
T. R. Jensen, M. Ø. Jensen, N. Reitzel, K. Balashev, G. H. Peters, K. Kjaer, and T. Bjørnholm, Phys. Rev. Lett. 90, 086101 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.086101
10.
R. Steitz, T. Gutberlet, T. Hauss, B. Klösgen, R. Krastev, S. Schemmel, A. C. Simonsen, and R. H. Findenegg, 19, 2409, (2003).
11.
M. O. Jensen, O. G. Mouritsen, and G. H. Peters, J. Chem. Phys. 120, 9729 (2004).
http://dx.doi.org/10.1063/1.1697379
12.
L. F. Scatena, M. G. Brown, and G. L. Richmond, Science 292, 908 (2001).
http://dx.doi.org/10.1126/science.1059514
13.
G. Cicero, J. C. Grossman, A. Catellani, and G. Galli, J. Am. Chem. Soc. 127, 6830 (2005).
http://dx.doi.org/10.1021/ja042963u
14.
G. Barcaro and A. Fortunelli, J. Phys. Chem. B 110, 21021 (2006);
http://dx.doi.org/10.1021/jp064519e
G. Barcaro and A. Fortunelli, J. Chem. Theory comput. 1, 972 (2005).
http://dx.doi.org/10.1021/ct050073e
15.
M. chen and D. Grodman, Acc. Chem. Res. 39, 739 (2006).
http://dx.doi.org/10.1021/ar040309d
16.
T. John, Jr. and yates, Surf. Sci. 565, 103 (2004).
http://dx.doi.org/10.1016/j.susc.2004.06.215
17.
G. Cicero, A. Catellani, and G. Galli, J. Phys. Chem. B 108, 16518 (2004).
http://dx.doi.org/10.1021/jp0471599
18.
T. S. Mahadevan and S. H. Garofalini, J. Phys. Chem. C 112, 1507 (2008).
http://dx.doi.org/10.1021/jp076936c
19.
R. Tian, O. Seitz, M. Li, W. Hu, Y. J. Chabal, and J. Gao, Langmuir 26, 4563 (2010).
http://dx.doi.org/10.1021/la904597c
20.
C. Mischler, J. Horbach, W. Kob, and K. Binder, J. Phys.: Condens. Matter 17, 4005 (2005).
http://dx.doi.org/10.1088/0953-8984/17/26/001
21.
M. D. Fayer, Accou. Chem. Res. 45, 3 (2012).
http://dx.doi.org/10.1021/ar2000088
22.
N. Bundaleski et al., J.Phys. Conf. Series 257, 012008 (2010).
http://dx.doi.org/10.1088/1742-6596/257/1/012008
23.
Tang Fu-Ling, Yue Rui, and Lu Wen-Jiang, Chin. Phys. B 20(2), 026801 (2011).
http://dx.doi.org/10.1088/1674-1056/20/2/026801
24.
S. T. Moin, L. H. V. Lim, T. S. Hofer, B. R. Randolf, and B. M. Rode, Inorg. Chem. 50, 3379 (2011).
http://dx.doi.org/10.1021/ic102240p
25.
S. Wendt, Y. D. Kim, and D. W. Goodman, Prog. Surf. Sci. 74, 141 (2003).
http://dx.doi.org/10.1016/j.progsurf.2003.08.011
26.
N. Gayathri, S. Izvekov, and G. A. Voth, J. Chem. Phys. 117, 872 (2002).
http://dx.doi.org/10.1063/1.1483070
27.
S. Baroni, S. de. Gironcoli, A. dal. Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.515
28.
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
29.
H. J. Monkhorst and J. D. Pack, Phys Rev B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
30.
J. Yang, S. Meng, L. Xu, and E. G. Wang, Phys Rev B 71, 035413 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035413
31.
R. H. Miwa, T. M. Schmidt, W. L. Scopel, and A. Fazzio, Appl. Phys. Lett. 99, 163108 (2011).
http://dx.doi.org/10.1063/1.3653261
32.
N. M. Harrison, An Introduction to Density Functional Theory (John Wiley and sons, Inc).
33.
Y.-N. Xu and W. Y. Ching, Phys. Rev. B 44, 11048 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.11048
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4960455
Loading
/content/aip/journal/adva/6/8/10.1063/1.4960455
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4960455
2016-08-01
2016-09-29

Abstract

We have investigated the structural and electronic properties of water molecule adsorbed silicon dioxide (α-SiO) [110] surface and analyzed the influence of water molecule on its energetics, structure and elctronic propertes using density functional theory based first principles calculations. The inhomogeneous topology of the α-SiO clean surface promotes a total charge density displacement on the adsorbed water molecule and giving rise to electron-rich as well as hole-rich region. The electronic charge transfer from a α-SiO to the water molecule occurs upon the formation of a partially occupied level laying above conduction band level.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4960455.html;jsessionid=vPAI8l6MA7eVS5turwOHQ7lM.x-aip-live-03?itemId=/content/aip/journal/adva/6/8/10.1063/1.4960455&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4960455&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4960455'
Right1,Right2,Right3,